當前位置: 首頁>>代碼示例>>Python>>正文


Python tf_example_decoder.LookupTensor方法代碼示例

本文整理匯總了Python中object_detection.data_decoders.tf_example_decoder.LookupTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tf_example_decoder.LookupTensor方法的具體用法?Python tf_example_decoder.LookupTensor怎麽用?Python tf_example_decoder.LookupTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.data_decoders.tf_example_decoder的用法示例。


在下文中一共展示了tf_example_decoder.LookupTensor方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testDecodeExampleWithBranchedLookup

# 需要導入模塊: from object_detection.data_decoders import tf_example_decoder [as 別名]
# 或者: from object_detection.data_decoders.tf_example_decoder import LookupTensor [as 別名]
def testDecodeExampleWithBranchedLookup(self):

    example = example_pb2.Example(features=feature_pb2.Features(feature={
        'image/object/class/text': self._BytesFeatureFromList(
            np.array(['cat', 'dog', 'guinea pig'])),
    }))
    serialized_example = example.SerializeToString()
    # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
    table = lookup_ops.index_table_from_tensor(
        constant_op.constant(['dog', 'guinea pig', 'cat']))

    with self.test_session() as sess:
      sess.run(lookup_ops.tables_initializer())

      serialized_example = array_ops.reshape(serialized_example, shape=[])

      keys_to_features = {
          'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string),
      }

      items_to_handlers = {
          'labels':
              tf_example_decoder.LookupTensor('image/object/class/text', table),
      }

      decoder = slim_example_decoder.TFExampleDecoder(keys_to_features,
                                                      items_to_handlers)
      obtained_class_ids = decoder.decode(serialized_example)[0].eval()

    self.assertAllClose([2, 0, 1], obtained_class_ids) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:32,代碼來源:tf_example_decoder_test.py

示例2: testDecodeExampleWithBranchedBackupHandler

# 需要導入模塊: from object_detection.data_decoders import tf_example_decoder [as 別名]
# 或者: from object_detection.data_decoders.tf_example_decoder import LookupTensor [as 別名]
def testDecodeExampleWithBranchedBackupHandler(self):
    example1 = example_pb2.Example(
        features=feature_pb2.Features(
            feature={
                'image/object/class/text':
                    self._BytesFeatureFromList(
                        np.array(['cat', 'dog', 'guinea pig'])),
                'image/object/class/label':
                    self._Int64FeatureFromList(np.array([42, 10, 900]))
            }))
    example2 = example_pb2.Example(
        features=feature_pb2.Features(
            feature={
                'image/object/class/text':
                    self._BytesFeatureFromList(
                        np.array(['cat', 'dog', 'guinea pig'])),
            }))
    example3 = example_pb2.Example(
        features=feature_pb2.Features(
            feature={
                'image/object/class/label':
                    self._Int64FeatureFromList(np.array([42, 10, 901]))
            }))
    # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
    table = lookup_ops.index_table_from_tensor(
        constant_op.constant(['dog', 'guinea pig', 'cat']))
    keys_to_features = {
        'image/object/class/text': parsing_ops.VarLenFeature(dtypes.string),
        'image/object/class/label': parsing_ops.VarLenFeature(dtypes.int64),
    }
    backup_handler = tf_example_decoder.BackupHandler(
        handler=slim_example_decoder.Tensor('image/object/class/label'),
        backup=tf_example_decoder.LookupTensor('image/object/class/text',
                                               table))
    items_to_handlers = {
        'labels': backup_handler,
    }
    decoder = slim_example_decoder.TFExampleDecoder(keys_to_features,
                                                    items_to_handlers)
    obtained_class_ids_each_example = []
    with self.test_session() as sess:
      sess.run(lookup_ops.tables_initializer())
      for example in [example1, example2, example3]:
        serialized_example = array_ops.reshape(
            example.SerializeToString(), shape=[])
        obtained_class_ids_each_example.append(
            decoder.decode(serialized_example)[0].eval())

    self.assertAllClose([42, 10, 900], obtained_class_ids_each_example[0])
    self.assertAllClose([2, 0, 1], obtained_class_ids_each_example[1])
    self.assertAllClose([42, 10, 901], obtained_class_ids_each_example[2]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:53,代碼來源:tf_example_decoder_test.py


注:本文中的object_detection.data_decoders.tf_example_decoder.LookupTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。