本文整理匯總了Python中object_detection.core.target_assigner.batch_assign_targets方法的典型用法代碼示例。如果您正苦於以下問題:Python target_assigner.batch_assign_targets方法的具體用法?Python target_assigner.batch_assign_targets怎麽用?Python target_assigner.batch_assign_targets使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.core.target_assigner
的用法示例。
在下文中一共展示了target_assigner.batch_assign_targets方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list)
示例2: test_batch_assign_empty_groundtruth
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_target_assigner()
num_classes = 3
unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch, unmatched_class_label)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_cls_weights = [[[1, 1, 1, 1],
[1, 1, 1, 1]]]
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例3: test_batch_assign_empty_groundtruth
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例4: test_batch_assign_empty_groundtruth
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, groundtruth_box_corners, gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_target_assigner()
num_classes = 3
unmatched_class_label = tf.constant([1] + num_classes * [0], tf.float32)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch, unmatched_class_label)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_box_corners, gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例5: test_batch_assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_targets(self):
box_list1 = box_list.BoxList(tf.constant([[0., 0., 0.2, 0.2]]))
box_list2 = box_list.BoxList(tf.constant(
[[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]]
))
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
prior_means = tf.constant([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]])
prior_stddevs = tf.constant([[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
exp_match_0 = [0]
exp_match_1 = [1, 2]
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
match_list) = targetassigner.batch_assign_targets(
agnostic_target_assigner, priors, gt_box_batch, gt_class_targets)
self.assertTrue(isinstance(match_list, list) and len(match_list) == 2)
with self.test_session() as sess:
(cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out,
match_out_0, match_out_1) = sess.run([
cls_targets, cls_weights, reg_targets, reg_weights] + [
match.matched_column_indices() for match in match_list])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertAllClose(match_out_0, exp_match_0)
self.assertAllClose(match_out_1, exp_match_1)
示例6: test_batch_assign_empty_groundtruth
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_empty_groundtruth(self):
box_coords_expanded = tf.zeros((1, 4), tf.float32)
box_coords = tf.slice(box_coords_expanded, [0, 0], [0, 4])
box_list1 = box_list.BoxList(box_coords)
gt_box_batch = [box_list1]
prior_means = tf.constant([[0, 0, .25, .25],
[0, .25, 1, 1]])
prior_stddevs = tf.constant([[.1, .1, .1, .1],
[.1, .1, .1, .1]])
priors = box_list.BoxList(prior_means)
priors.add_field('stddev', prior_stddevs)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
exp_match_0 = []
num_classes = 3
pad = 1
gt_class_targets = tf.zeros((0, num_classes + pad))
gt_class_targets_batch = [gt_class_targets]
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
match_list) = targetassigner.batch_assign_targets(
multiclass_target_assigner, priors,
gt_box_batch, gt_class_targets_batch)
self.assertTrue(isinstance(match_list, list) and len(match_list) == 1)
with self.test_session() as sess:
(cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out,
match_out_0) = sess.run([
cls_targets, cls_weights, reg_targets, reg_weights] + [
match.matched_column_indices() for match in match_list])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
self.assertAllClose(match_out_0, exp_match_0)
示例7: _assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
if self._add_background_class:
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
else:
groundtruth_classes_with_background_list = groundtruth_classes_list
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, self._unmatched_class_label,
groundtruth_weights_list)
示例8: test_batch_assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
agnostic_target_assigner = self._get_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_cls_weights = [[[1], [1], [1], [1]],
[[1], [1], [1], [1]]]
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例9: _assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
示例10: test_batch_assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_boxlist1,
groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
anchor_stddevs = np.array([[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1],
[.1, .1, .1, .1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
groundtruth_boxlist1,
groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例11: test_batch_assign_empty_groundtruth
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_empty_groundtruth(self):
def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners,
gt_class_targets):
groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
gt_box_batch = [groundtruth_boxlist]
gt_class_targets_batch = [gt_class_targets]
anchors_boxlist = box_list.BoxList(anchor_means)
anchors_boxlist.add_field('stddev', anchor_stddevs)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist,
gt_box_batch, gt_class_targets_batch)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_box_corners = np.zeros((0, 4), dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1]], dtype=np.float32)
anchor_stddevs = np.array([[.1, .1, .1, .1],
[.1, .1, .1, .1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, 0, 0],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1]]
exp_cls_targets = [[[1, 0, 0, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[0, 0]]
num_classes = 3
pad = 1
gt_class_targets = np.zeros((0, num_classes + pad), dtype=np.float32)
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(
graph_fn, [anchor_means, anchor_stddevs, groundtruth_box_corners,
gt_class_targets])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例12: _assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def _assign_targets(self, groundtruth_boxes_list, groundtruth_classes_list,
groundtruth_keypoints_list=None,
groundtruth_weights_list=None):
"""Assign groundtruth targets.
Adds a background class to each one-hot encoding of groundtruth classes
and uses target assigner to obtain regression and classification targets.
Args:
groundtruth_boxes_list: a list of 2-D tensors of shape [num_boxes, 4]
containing coordinates of the groundtruth boxes.
Groundtruth boxes are provided in [y_min, x_min, y_max, x_max]
format and assumed to be normalized and clipped
relative to the image window with y_min <= y_max and x_min <= x_max.
groundtruth_classes_list: a list of 2-D one-hot (or k-hot) tensors of
shape [num_boxes, num_classes] containing the class targets with the 0th
index assumed to map to the first non-background class.
groundtruth_keypoints_list: (optional) a list of 3-D tensors of shape
[num_boxes, num_keypoints, 2]
groundtruth_weights_list: A list of 1-D tf.float32 tensors of shape
[num_boxes] containing weights for groundtruth boxes.
Returns:
batch_cls_targets: a tensor with shape [batch_size, num_anchors,
num_classes],
batch_cls_weights: a tensor with shape [batch_size, num_anchors],
batch_reg_targets: a tensor with shape [batch_size, num_anchors,
box_code_dimension]
batch_reg_weights: a tensor with shape [batch_size, num_anchors],
match_list: a list of matcher.Match objects encoding the match between
anchors and groundtruth boxes for each image of the batch,
with rows of the Match objects corresponding to groundtruth boxes
and columns corresponding to anchors.
"""
groundtruth_boxlists = [
box_list.BoxList(boxes) for boxes in groundtruth_boxes_list
]
if self._add_background_class:
groundtruth_classes_with_background_list = [
tf.pad(one_hot_encoding, [[0, 0], [1, 0]], mode='CONSTANT')
for one_hot_encoding in groundtruth_classes_list
]
else:
groundtruth_classes_with_background_list = groundtruth_classes_list
if groundtruth_keypoints_list is not None:
for boxlist, keypoints in zip(
groundtruth_boxlists, groundtruth_keypoints_list):
boxlist.add_field(fields.BoxListFields.keypoints, keypoints)
return target_assigner.batch_assign_targets(
self._target_assigner, self.anchors, groundtruth_boxlists,
groundtruth_classes_with_background_list, groundtruth_weights_list)
示例13: test_batch_assign_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [None, None]
anchors_boxlist = box_list.BoxList(anchor_means)
agnostic_target_assigner = self._get_agnostic_target_assigner()
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
agnostic_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[1], [0], [0], [0]],
[[0], [1], [1], [0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out,
cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
graph_fn, [anchor_means, groundtruth_boxlist1, groundtruth_boxlist2])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)
示例14: test_batch_assign_multiclass_targets
# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import batch_assign_targets [as 別名]
def test_batch_assign_multiclass_targets(self):
def graph_fn(anchor_means, groundtruth_boxlist1, groundtruth_boxlist2,
class_targets1, class_targets2):
box_list1 = box_list.BoxList(groundtruth_boxlist1)
box_list2 = box_list.BoxList(groundtruth_boxlist2)
gt_box_batch = [box_list1, box_list2]
gt_class_targets = [class_targets1, class_targets2]
anchors_boxlist = box_list.BoxList(anchor_means)
multiclass_target_assigner = self._get_multi_class_target_assigner(
num_classes=3)
(cls_targets, cls_weights, reg_targets, reg_weights,
_) = targetassigner.batch_assign_targets(
multiclass_target_assigner, anchors_boxlist, gt_box_batch,
gt_class_targets)
return (cls_targets, cls_weights, reg_targets, reg_weights)
groundtruth_boxlist1 = np.array([[0., 0., 0.2, 0.2]], dtype=np.float32)
groundtruth_boxlist2 = np.array([[0, 0.25123152, 1, 1],
[0.015789, 0.0985, 0.55789, 0.3842]],
dtype=np.float32)
class_targets1 = np.array([[0, 1, 0, 0]], dtype=np.float32)
class_targets2 = np.array([[0, 0, 0, 1],
[0, 0, 1, 0]], dtype=np.float32)
anchor_means = np.array([[0, 0, .25, .25],
[0, .25, 1, 1],
[0, .1, .5, .5],
[.75, .75, 1, 1]], dtype=np.float32)
exp_reg_targets = [[[0, 0, -0.5, -0.5],
[0, 0, 0, 0],
[0, 0, 0, 0,],
[0, 0, 0, 0,],],
[[0, 0, 0, 0,],
[0, 0.01231521, 0, 0],
[0.15789001, -0.01500003, 0.57889998, -1.15799987],
[0, 0, 0, 0]]]
exp_cls_weights = [[1, 1, 1, 1],
[1, 1, 1, 1]]
exp_cls_targets = [[[0, 1, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0],
[1, 0, 0, 0]],
[[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
[1, 0, 0, 0]]]
exp_reg_weights = [[1, 0, 0, 0],
[0, 1, 1, 0]]
(cls_targets_out, cls_weights_out, reg_targets_out,
reg_weights_out) = self.execute(graph_fn, [
anchor_means, groundtruth_boxlist1, groundtruth_boxlist2,
class_targets1, class_targets2
])
self.assertAllClose(cls_targets_out, exp_cls_targets)
self.assertAllClose(cls_weights_out, exp_cls_weights)
self.assertAllClose(reg_targets_out, exp_reg_targets)
self.assertAllClose(reg_weights_out, exp_reg_weights)