當前位置: 首頁>>代碼示例>>Python>>正文


Python target_assigner.TargetAssigner方法代碼示例

本文整理匯總了Python中object_detection.core.target_assigner.TargetAssigner方法的典型用法代碼示例。如果您正苦於以下問題:Python target_assigner.TargetAssigner方法的具體用法?Python target_assigner.TargetAssigner怎麽用?Python target_assigner.TargetAssigner使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.target_assigner的用法示例。


在下文中一共展示了target_assigner.TargetAssigner方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_raises_error_on_invalid_groundtruth_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:target_assigner_test.py

示例2: test_raises_error_on_invalid_groundtruth_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
    unmatched_class_label = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    priors = box_list.BoxList(prior_means)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(
          priors,
          boxes,
          groundtruth_labels,
          unmatched_class_label=unmatched_class_label) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:25,代碼來源:target_assigner_test.py

示例3: __init__

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def __init__(self):
    similarity_calc = region_similarity_calculator.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(
        matched_threshold=ssd_constants.MATCH_THRESHOLD,
        unmatched_threshold=ssd_constants.MATCH_THRESHOLD,
        negatives_lower_than_unmatched=True,
        force_match_for_each_row=True)

    box_coder = faster_rcnn_box_coder.FasterRcnnBoxCoder(
        scale_factors=ssd_constants.BOX_CODER_SCALES)

    self.default_boxes = DefaultBoxes()('ltrb')
    self.default_boxes = box_list.BoxList(
        tf.convert_to_tensor(self.default_boxes))
    self.assigner = target_assigner.TargetAssigner(
        similarity_calc, matcher, box_coder) 
開發者ID:tensorflow,項目名稱:benchmarks,代碼行數:18,代碼來源:ssd_dataloader.py

示例4: test_raises_error_on_invalid_groundtruth_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    prior_stddevs = tf.constant([[1.0, 1.0, 1.0, 1.0]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:25,代碼來源:target_assigner_test.py

示例5: test_raises_error_on_invalid_groundtruth_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_invalid_groundtruth_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=1.0)
    unmatched_cls_target = tf.constant([[0, 0], [0, 0], [0, 0]], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5]])
    priors = box_list.BoxList(prior_means)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))
    groundtruth_labels = tf.constant([[[0, 1], [1, 0]]], tf.float32)

    with self.assertRaises(ValueError):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:23,代碼來源:target_assigner_test.py

示例6: test_assign_multiclass_unequal_class_weights

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_assign_multiclass_unequal_class_weights(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0, negative_class_weight=0.5,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
                               [0.5, 0.5, 1.0, 0.8],
                               [0, 0.5, .5, 1.0],
                               [.75, 0, 1.0, .25]])
    prior_stddevs = tf.constant(4 * [4 * [.1]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
                                      [0, 0, 0, 0, 0, 1, 0],
                                      [0, 0, 0, 1, 0, 0, 0]], tf.float32)

    exp_cls_weights = [1, 1, .5, 1]
    result = target_assigner.assign(priors, boxes, groundtruth_labels,
                                    num_valid_rows=3)
    (_, cls_weights, _, _, _) = result
    with self.test_session() as sess:
      cls_weights_out = sess.run(cls_weights)
      self.assertAllClose(cls_weights_out, exp_cls_weights) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:36,代碼來源:target_assigner_test.py

示例7: _get_agnostic_target_assigner

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def _get_agnostic_target_assigner(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0,
        negative_class_weight=1.0,
        unmatched_cls_target=None) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:11,代碼來源:target_assigner_test.py

示例8: _get_multi_class_target_assigner

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def _get_multi_class_target_assigner(self, num_classes):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([1] + num_classes * [0], tf.float32)
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0,
        negative_class_weight=1.0,
        unmatched_cls_target=unmatched_cls_target) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:12,代碼來源:target_assigner_test.py

示例9: _get_multi_dimensional_target_assigner

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def _get_multi_dimensional_target_assigner(self, target_dimensions):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant(np.zeros(target_dimensions),
                                       tf.float32)
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        positive_class_weight=1.0,
        negative_class_weight=1.0,
        unmatched_cls_target=unmatched_cls_target) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:13,代碼來源:target_assigner_test.py

示例10: test_assign_agnostic

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_assign_agnostic(self):
    def graph_fn(anchor_means, groundtruth_box_corners):
      similarity_calc = region_similarity_calculator.IouSimilarity()
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                             unmatched_threshold=0.5)
      box_coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1)
      target_assigner = targetassigner.TargetAssigner(
          similarity_calc, matcher, box_coder)
      anchors_boxlist = box_list.BoxList(anchor_means)
      groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
      result = target_assigner.assign(
          anchors_boxlist, groundtruth_boxlist, unmatched_class_label=None)
      (cls_targets, cls_weights, reg_targets, reg_weights, _) = result
      return (cls_targets, cls_weights, reg_targets, reg_weights)

    anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
                             [0.5, 0.5, 1.0, 0.8],
                             [0, 0.5, .5, 1.0]], dtype=np.float32)
    groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.9, 0.9]],
                                       dtype=np.float32)
    exp_cls_targets = [[1], [1], [0]]
    exp_cls_weights = [[1], [1], [1]]
    exp_reg_targets = [[0, 0, 0, 0],
                       [0, 0, -1, 1],
                       [0, 0, 0, 0]]
    exp_reg_weights = [1, 1, 0]

    (cls_targets_out,
     cls_weights_out, reg_targets_out, reg_weights_out) = self.execute(
         graph_fn, [anchor_means, groundtruth_box_corners])
    self.assertAllClose(cls_targets_out, exp_cls_targets)
    self.assertAllClose(cls_weights_out, exp_cls_weights)
    self.assertAllClose(reg_targets_out, exp_reg_targets)
    self.assertAllClose(reg_weights_out, exp_reg_weights)
    self.assertEquals(cls_targets_out.dtype, np.float32)
    self.assertEquals(cls_weights_out.dtype, np.float32)
    self.assertEquals(reg_targets_out.dtype, np.float32)
    self.assertEquals(reg_weights_out.dtype, np.float32) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:41,代碼來源:target_assigner_test.py

示例11: test_raises_error_on_incompatible_groundtruth_boxes_and_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_class_label = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
                               [0.5, 0.5, 1.0, 0.8],
                               [0, 0.5, .5, 1.0],
                               [.75, 0, 1.0, .25]])
    priors = box_list.BoxList(prior_means)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.0, 0.0, 0.5, 0.8],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
                                      [0, 0, 0, 0, 0, 1, 0],
                                      [0, 0, 0, 1, 0, 0, 0]], tf.float32)
    with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
      target_assigner.assign(
          priors,
          boxes,
          groundtruth_labels,
          unmatched_class_label=unmatched_class_label) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:31,代碼來源:target_assigner_test.py

示例12: test_assign_agnostic

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_assign_agnostic(self):
    def graph_fn(anchor_means, anchor_stddevs, groundtruth_box_corners):
      similarity_calc = region_similarity_calculator.IouSimilarity()
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                             unmatched_threshold=0.5)
      box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
      target_assigner = targetassigner.TargetAssigner(
          similarity_calc, matcher, box_coder, unmatched_cls_target=None)
      anchors_boxlist = box_list.BoxList(anchor_means)
      anchors_boxlist.add_field('stddev', anchor_stddevs)
      groundtruth_boxlist = box_list.BoxList(groundtruth_box_corners)
      result = target_assigner.assign(anchors_boxlist, groundtruth_boxlist)
      (cls_targets, cls_weights, reg_targets, reg_weights, _) = result
      return (cls_targets, cls_weights, reg_targets, reg_weights)

    anchor_means = np.array([[0.0, 0.0, 0.5, 0.5],
                             [0.5, 0.5, 1.0, 0.8],
                             [0, 0.5, .5, 1.0]], dtype=np.float32)
    anchor_stddevs = np.array(3 * [4 * [.1]], dtype=np.float32)
    groundtruth_box_corners = np.array([[0.0, 0.0, 0.5, 0.5],
                                        [0.5, 0.5, 0.9, 0.9]],
                                       dtype=np.float32)
    exp_cls_targets = [[1], [1], [0]]
    exp_cls_weights = [1, 1, 1]
    exp_reg_targets = [[0, 0, 0, 0],
                       [0, 0, -1, 1],
                       [0, 0, 0, 0]]
    exp_reg_weights = [1, 1, 0]

    (cls_targets_out, cls_weights_out, reg_targets_out,
     reg_weights_out) = self.execute(graph_fn, [anchor_means, anchor_stddevs,
                                                groundtruth_box_corners])
    self.assertAllClose(cls_targets_out, exp_cls_targets)
    self.assertAllClose(cls_weights_out, exp_cls_weights)
    self.assertAllClose(reg_targets_out, exp_reg_targets)
    self.assertAllClose(reg_weights_out, exp_reg_weights)
    self.assertEquals(cls_targets_out.dtype, np.float32)
    self.assertEquals(cls_weights_out.dtype, np.float32)
    self.assertEquals(reg_targets_out.dtype, np.float32)
    self.assertEquals(reg_weights_out.dtype, np.float32) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:42,代碼來源:target_assigner_test.py

示例13: test_raises_error_on_incompatible_groundtruth_boxes_and_labels

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def test_raises_error_on_incompatible_groundtruth_boxes_and_labels(self):
    similarity_calc = region_similarity_calculator.NegSqDistSimilarity()
    matcher = bipartite_matcher.GreedyBipartiteMatcher()
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant([1, 0, 0, 0, 0, 0, 0], tf.float32)
    target_assigner = targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target)

    prior_means = tf.constant([[0.0, 0.0, 0.5, 0.5],
                               [0.5, 0.5, 1.0, 0.8],
                               [0, 0.5, .5, 1.0],
                               [.75, 0, 1.0, .25]])
    prior_stddevs = tf.constant(4 * [4 * [.1]])
    priors = box_list.BoxList(prior_means)
    priors.add_field('stddev', prior_stddevs)

    box_corners = [[0.0, 0.0, 0.5, 0.5],
                   [0.0, 0.0, 0.5, 0.8],
                   [0.5, 0.5, 0.9, 0.9],
                   [.75, 0, .95, .27]]
    boxes = box_list.BoxList(tf.constant(box_corners))

    groundtruth_labels = tf.constant([[0, 1, 0, 0, 0, 0, 0],
                                      [0, 0, 0, 0, 0, 1, 0],
                                      [0, 0, 0, 1, 0, 0, 0]], tf.float32)
    with self.assertRaisesRegexp(ValueError, 'Unequal shapes'):
      target_assigner.assign(priors, boxes, groundtruth_labels,
                             num_valid_rows=3) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:31,代碼來源:target_assigner_test.py

示例14: _get_agnostic_target_assigner

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def _get_agnostic_target_assigner(self):
    similarity_calc = region_similarity_calculator.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                           unmatched_threshold=0.5)
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=None) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:10,代碼來源:target_assigner_test.py

示例15: _get_multi_dimensional_target_assigner

# 需要導入模塊: from object_detection.core import target_assigner [as 別名]
# 或者: from object_detection.core.target_assigner import TargetAssigner [as 別名]
def _get_multi_dimensional_target_assigner(self, target_dimensions):
    similarity_calc = region_similarity_calculator.IouSimilarity()
    matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=0.5,
                                           unmatched_threshold=0.5)
    box_coder = mean_stddev_box_coder.MeanStddevBoxCoder()
    unmatched_cls_target = tf.constant(np.zeros(target_dimensions),
                                       tf.float32)
    return targetassigner.TargetAssigner(
        similarity_calc, matcher, box_coder,
        unmatched_cls_target=unmatched_cls_target) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:12,代碼來源:target_assigner_test.py


注:本文中的object_detection.core.target_assigner.TargetAssigner方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。