當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessor_cache.PreprocessorCache方法代碼示例

本文整理匯總了Python中object_detection.core.preprocessor_cache.PreprocessorCache方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessor_cache.PreprocessorCache方法的具體用法?Python preprocessor_cache.PreprocessorCache怎麽用?Python preprocessor_cache.PreprocessorCache使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.preprocessor_cache的用法示例。


在下文中一共展示了preprocessor_cache.PreprocessorCache方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _apply_with_random_selector

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def _apply_with_random_selector(x,
                                func,
                                num_cases,
                                preprocess_vars_cache=None,
                                key=''):
  """Computes func(x, sel), with sel sampled from [0...num_cases-1].

  If both preprocess_vars_cache AND key are the same between two calls, sel will
  be the same value in both calls.

  Args:
    x: input Tensor.
    func: Python function to apply.
    num_cases: Python int32, number of cases to sample sel from.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.
    key: variable identifier for preprocess_vars_cache.

  Returns:
    The result of func(x, sel), where func receives the value of the
    selector as a python integer, but sel is sampled dynamically.
  """
  generator_func = functools.partial(
      tf.random_uniform, [], maxval=num_cases, dtype=tf.int32)
  rand_sel = _get_or_create_preprocess_rand_vars(
      generator_func, preprocessor_cache.PreprocessorCache.SELECTOR,
      preprocess_vars_cache, key)

  # Pass the real x only to one of the func calls.
  return control_flow_ops.merge([func(
      control_flow_ops.switch(x, tf.equal(rand_sel, case))[1], case)
                                 for case in range(num_cases)])[0] 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:36,代碼來源:preprocessor.py

示例2: _get_or_create_preprocess_rand_vars

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def _get_or_create_preprocess_rand_vars(generator_func,
                                        function_id,
                                        preprocess_vars_cache,
                                        key=''):
  """Returns a tensor stored in preprocess_vars_cache or using generator_func.

  If the tensor was previously generated and appears in the PreprocessorCache,
  the previously generated tensor will be returned. Otherwise, a new tensor
  is generated using generator_func and stored in the cache.

  Args:
    generator_func: A 0-argument function that generates a tensor.
    function_id: identifier for the preprocessing function used.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.
    key: identifier for the variable stored.
  Returns:
    The generated tensor.
  """
  if preprocess_vars_cache is not None:
    var = preprocess_vars_cache.get(function_id, key)
    if var is None:
      var = generator_func()
      preprocess_vars_cache.update(function_id, key, var)
  else:
    var = generator_func()
  return var 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:31,代碼來源:preprocessor.py

示例3: random_pixel_value_scale

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_pixel_value_scale(image,
                             minval=0.9,
                             maxval=1.1,
                             seed=None,
                             preprocess_vars_cache=None):
  """Scales each value in the pixels of the image.

     This function scales each pixel independent of the other ones.
     For each value in image tensor, draws a random number between
     minval and maxval and multiples the values with them.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 255].
    minval: lower ratio of scaling pixel values.
    maxval: upper ratio of scaling pixel values.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomPixelValueScale', values=[image]):
    generator_func = functools.partial(
        tf.random_uniform, tf.shape(image),
        minval=minval, maxval=maxval,
        dtype=tf.float32, seed=seed)
    color_coef = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.PIXEL_VALUE_SCALE,
        preprocess_vars_cache)

    image = tf.multiply(image, color_coef)
    image = tf.clip_by_value(image, 0.0, 255.0)

  return image 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:41,代碼來源:preprocessor.py

示例4: random_adjust_brightness

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_brightness(image,
                             max_delta=0.2,
                             seed=None,
                             preprocess_vars_cache=None):
  """Randomly adjusts brightness.

  Makes sure the output image is still between 0 and 255.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 255].
    max_delta: how much to change the brightness. A value between [0, 1).
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
    boxes: boxes which is the same shape as input boxes.
  """
  with tf.name_scope('RandomAdjustBrightness', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       -max_delta, max_delta, seed=seed)
    delta = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_BRIGHTNESS,
        preprocess_vars_cache)

    image = tf.image.adjust_brightness(image / 255, delta) * 255
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
    return image 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:35,代碼來源:preprocessor.py

示例5: random_adjust_contrast

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_contrast(image,
                           min_delta=0.8,
                           max_delta=1.25,
                           seed=None,
                           preprocess_vars_cache=None):
  """Randomly adjusts contrast.

  Makes sure the output image is still between 0 and 255.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 255].
    min_delta: see max_delta.
    max_delta: how much to change the contrast. Contrast will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current contrast of the image.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustContrast', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       min_delta, max_delta, seed=seed)
    contrast_factor = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_CONTRAST,
        preprocess_vars_cache)
    image = tf.image.adjust_contrast(image / 255, contrast_factor) * 255
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
    return image 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:preprocessor.py

示例6: random_adjust_hue

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_hue(image,
                      max_delta=0.02,
                      seed=None,
                      preprocess_vars_cache=None):
  """Randomly adjusts hue.

  Makes sure the output image is still between 0 and 255.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 255].
    max_delta: change hue randomly with a value between 0 and max_delta.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustHue', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       -max_delta, max_delta, seed=seed)
    delta = _get_or_create_preprocess_rand_vars(
        generator_func, preprocessor_cache.PreprocessorCache.ADJUST_HUE,
        preprocess_vars_cache)
    image = tf.image.adjust_hue(image / 255, delta) * 255
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
    return image 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:32,代碼來源:preprocessor.py

示例7: random_adjust_saturation

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_saturation(image,
                             min_delta=0.8,
                             max_delta=1.25,
                             seed=None,
                             preprocess_vars_cache=None):
  """Randomly adjusts saturation.

  Makes sure the output image is still between 0 and 255.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 255].
    min_delta: see max_delta.
    max_delta: how much to change the saturation. Saturation will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current saturation of the image.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustSaturation', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       min_delta, max_delta, seed=seed)
    saturation_factor = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_SATURATION,
        preprocess_vars_cache)
    image = tf.image.adjust_saturation(image / 255, saturation_factor) * 255
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=255.0)
    return image 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:preprocessor.py

示例8: random_pixel_value_scale

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_pixel_value_scale(image,
                             minval=0.9,
                             maxval=1.1,
                             seed=None,
                             preprocess_vars_cache=None):
  """Scales each value in the pixels of the image.

     This function scales each pixel independent of the other ones.
     For each value in image tensor, draws a random number between
     minval and maxval and multiples the values with them.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    minval: lower ratio of scaling pixel values.
    maxval: upper ratio of scaling pixel values.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomPixelValueScale', values=[image]):
    generator_func = functools.partial(
        tf.random_uniform, tf.shape(image),
        minval=minval, maxval=maxval,
        dtype=tf.float32, seed=seed)
    color_coef = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.PIXEL_VALUE_SCALE,
        preprocess_vars_cache)

    image = tf.multiply(image, color_coef)
    image = tf.clip_by_value(image, 0.0, 1.0)

  return image 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:41,代碼來源:preprocessor.py

示例9: random_adjust_brightness

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_brightness(image,
                             max_delta=0.2,
                             seed=None,
                             preprocess_vars_cache=None):
  """Randomly adjusts brightness.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    max_delta: how much to change the brightness. A value between [0, 1).
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
    boxes: boxes which is the same shape as input boxes.
  """
  with tf.name_scope('RandomAdjustBrightness', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       -max_delta, max_delta, seed=seed)
    delta = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_BRIGHTNESS,
        preprocess_vars_cache)

    image = tf.image.adjust_brightness(image, delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:35,代碼來源:preprocessor.py

示例10: random_adjust_contrast

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_contrast(image,
                           min_delta=0.8,
                           max_delta=1.25,
                           seed=None,
                           preprocess_vars_cache=None):
  """Randomly adjusts contrast.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    min_delta: see max_delta.
    max_delta: how much to change the contrast. Contrast will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current contrast of the image.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustContrast', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       min_delta, max_delta, seed=seed)
    contrast_factor = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_CONTRAST,
        preprocess_vars_cache)
    image = tf.image.adjust_contrast(image, contrast_factor)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:37,代碼來源:preprocessor.py

示例11: random_adjust_hue

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_hue(image,
                      max_delta=0.02,
                      seed=None,
                      preprocess_vars_cache=None):
  """Randomly adjusts hue.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    max_delta: change hue randomly with a value between 0 and max_delta.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustHue', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       -max_delta, max_delta, seed=seed)
    delta = _get_or_create_preprocess_rand_vars(
        generator_func, preprocessor_cache.PreprocessorCache.ADJUST_HUE,
        preprocess_vars_cache)
    image = tf.image.adjust_hue(image, delta)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:32,代碼來源:preprocessor.py

示例12: random_adjust_saturation

# 需要導入模塊: from object_detection.core import preprocessor_cache [as 別名]
# 或者: from object_detection.core.preprocessor_cache import PreprocessorCache [as 別名]
def random_adjust_saturation(image,
                             min_delta=0.8,
                             max_delta=1.25,
                             seed=None,
                             preprocess_vars_cache=None):
  """Randomly adjusts saturation.

  Makes sure the output image is still between 0 and 1.

  Args:
    image: rank 3 float32 tensor contains 1 image -> [height, width, channels]
           with pixel values varying between [0, 1].
    min_delta: see max_delta.
    max_delta: how much to change the saturation. Saturation will change with a
               value between min_delta and max_delta. This value will be
               multiplied to the current saturation of the image.
    seed: random seed.
    preprocess_vars_cache: PreprocessorCache object that records previously
                           performed augmentations. Updated in-place. If this
                           function is called multiple times with the same
                           non-null cache, it will perform deterministically.

  Returns:
    image: image which is the same shape as input image.
  """
  with tf.name_scope('RandomAdjustSaturation', values=[image]):
    generator_func = functools.partial(tf.random_uniform, [],
                                       min_delta, max_delta, seed=seed)
    saturation_factor = _get_or_create_preprocess_rand_vars(
        generator_func,
        preprocessor_cache.PreprocessorCache.ADJUST_SATURATION,
        preprocess_vars_cache)
    image = tf.image.adjust_saturation(image, saturation_factor)
    image = tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0)
    return image 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:37,代碼來源:preprocessor.py


注:本文中的object_detection.core.preprocessor_cache.PreprocessorCache方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。