當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessor.random_rgb_to_gray方法代碼示例

本文整理匯總了Python中object_detection.core.preprocessor.random_rgb_to_gray方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessor.random_rgb_to_gray方法的具體用法?Python preprocessor.random_rgb_to_gray怎麽用?Python preprocessor.random_rgb_to_gray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.random_rgb_to_gray方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testRandomRGBtoGray

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_rgb_to_gray [as 別名]
def testRandomRGBtoGray(self):
    preprocess_options = [(preprocessor.random_rgb_to_gray, {})]
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images_gray = tensor_dict[fields.InputDataFields.image]
    images_gray_r, images_gray_g, images_gray_b = tf.split(
        value=images_gray, num_or_size_splits=3, axis=3)
    images_r, images_g, images_b = tf.split(
        value=images_original, num_or_size_splits=3, axis=3)
    images_r_diff1 = tf.squared_difference(tf.to_float(images_r),
                                           tf.to_float(images_gray_r))
    images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r),
                                           tf.to_float(images_gray_g))
    images_r_diff = tf.multiply(images_r_diff1, images_r_diff2)
    images_g_diff1 = tf.squared_difference(tf.to_float(images_g),
                                           tf.to_float(images_gray_g))
    images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g),
                                           tf.to_float(images_gray_b))
    images_g_diff = tf.multiply(images_g_diff1, images_g_diff2)
    images_b_diff1 = tf.squared_difference(tf.to_float(images_b),
                                           tf.to_float(images_gray_b))
    images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b),
                                           tf.to_float(images_gray_r))
    images_b_diff = tf.multiply(images_b_diff1, images_b_diff2)
    image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1])
    with self.test_session() as sess:
      (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run(
          [images_r_diff, images_g_diff, images_b_diff, image_zero1])
      self.assertAllClose(images_r_diff_, image_zero1_)
      self.assertAllClose(images_g_diff_, image_zero1_)
      self.assertAllClose(images_b_diff_, image_zero1_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:preprocessor_test.py

示例2: test_build_random_rgb_to_gray

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_rgb_to_gray [as 別名]
def test_build_random_rgb_to_gray(self):
    preprocessor_text_proto = """
    random_rgb_to_gray {
      probability: 0.8
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.random_rgb_to_gray)
    self.assert_dictionary_close(args, {'probability': 0.8}) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:13,代碼來源:preprocessor_builder_test.py

示例3: testRandomRGBtoGrayWithCache

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_rgb_to_gray [as 別名]
def testRandomRGBtoGrayWithCache(self):
    preprocess_options = [(
        preprocessor.random_rgb_to_gray, {'probability': 0.5})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=False,
                                test_masks=False,
                                test_keypoints=False) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:9,代碼來源:preprocessor_test.py

示例4: testRandomCropImageWithCache

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_rgb_to_gray [as 別名]
def testRandomCropImageWithCache(self):
    preprocess_options = [(preprocessor.random_rgb_to_gray,
                           {'probability': 0.5}),
                          (preprocessor.normalize_image, {
                              'original_minval': 0,
                              'original_maxval': 255,
                              'target_minval': 0,
                              'target_maxval': 1,
                          }),
                          (preprocessor.random_crop_image, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:16,代碼來源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.random_rgb_to_gray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。