當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessor.random_pad_to_aspect_ratio方法代碼示例

本文整理匯總了Python中object_detection.core.preprocessor.random_pad_to_aspect_ratio方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessor.random_pad_to_aspect_ratio方法的具體用法?Python preprocessor.random_pad_to_aspect_ratio怎麽用?Python preprocessor.random_pad_to_aspect_ratio使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.random_pad_to_aspect_ratio方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testRandomPadToAspectRatioWithCache

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 別名]
def testRandomPadToAspectRatioWithCache(self):
    preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=True,
                                test_keypoints=True) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:8,代碼來源:preprocessor_test.py

示例2: testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 別名]
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map()
    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio,
                              {'min_padded_size_ratio': (4.0, 4.0),
                               'max_padded_size_ratio': (4.0, 4.0)})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    with self.test_session() as sess:
      distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([
          distorted_image, distorted_boxes, distorted_labels])

      expected_boxes = np.array(
          [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]],
          dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten()) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:36,代碼來源:preprocessor_test.py

示例3: testRunRandomPadToAspectRatioWithMasks

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 別名]
def testRunRandomPadToAspectRatioWithMasks(self):
    image = self.createColorfulTestImage()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    masks = tf.random_uniform([2, 200, 400], dtype=tf.float32)

    tensor_dict = {
        fields.InputDataFields.image: image,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
        fields.InputDataFields.groundtruth_instance_masks: masks
    }

    preprocessor_arg_map = preprocessor.get_default_func_arg_map(
        include_instance_masks=True)

    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})]

    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map)
    distorted_image = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    distorted_labels = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_classes]
    distorted_masks = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_instance_masks]
    with self.test_session() as sess:
      (distorted_image_, distorted_boxes_, distorted_labels_,
       distorted_masks_) = sess.run([
           distorted_image, distorted_boxes, distorted_labels, distorted_masks
       ])

      expected_boxes = np.array(
          [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32)
      self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3])
      self.assertAllEqual(distorted_labels_, [1, 2])
      self.assertAllClose(distorted_boxes_.flatten(),
                          expected_boxes.flatten())
      self.assertAllEqual(distorted_masks_.shape, [2, 400, 400]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:42,代碼來源:preprocessor_test.py

示例4: testRandomPadToAspectRatio

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_pad_to_aspect_ratio [as 別名]
def testRandomPadToAspectRatio(self):
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    tensor_dict = preprocessor.preprocess(tensor_dict, [])
    images = tensor_dict[fields.InputDataFields.image]

    preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {
        'aspect_ratio': 2.0
    })]
    padded_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                 preprocessing_options)

    padded_images = padded_tensor_dict[fields.InputDataFields.image]
    padded_boxes = padded_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    boxes_shape = tf.shape(boxes)
    padded_boxes_shape = tf.shape(padded_boxes)
    images_shape = tf.shape(images)
    padded_images_shape = tf.shape(padded_images)

    with self.test_session() as sess:
      (boxes_shape_, padded_boxes_shape_, images_shape_,
       padded_images_shape_) = sess.run([
           boxes_shape, padded_boxes_shape, images_shape, padded_images_shape
       ])
      self.assertAllEqual(boxes_shape_, padded_boxes_shape_)
      self.assertEqual(images_shape_[1], padded_images_shape_[1])
      self.assertEqual(2 * images_shape_[2], padded_images_shape_[2]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:36,代碼來源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.random_pad_to_aspect_ratio方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。