本文整理匯總了Python中object_detection.core.preprocessor.random_image_scale方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessor.random_image_scale方法的具體用法?Python preprocessor.random_image_scale怎麽用?Python preprocessor.random_image_scale使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.core.preprocessor
的用法示例。
在下文中一共展示了preprocessor.random_image_scale方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testRandomImageScale
# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_image_scale [as 別名]
def testRandomImageScale(self):
preprocess_options = [(preprocessor.random_image_scale, {})]
images_original = self.createTestImages()
tensor_dict = {fields.InputDataFields.image: images_original}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images_scaled = tensor_dict[fields.InputDataFields.image]
images_original_shape = tf.shape(images_original)
images_scaled_shape = tf.shape(images_scaled)
with self.test_session() as sess:
(images_original_shape_, images_scaled_shape_) = sess.run(
[images_original_shape, images_scaled_shape])
self.assertTrue(
images_original_shape_[1] * 0.5 <= images_scaled_shape_[1])
self.assertTrue(
images_original_shape_[1] * 2.0 >= images_scaled_shape_[1])
self.assertTrue(
images_original_shape_[2] * 0.5 <= images_scaled_shape_[2])
self.assertTrue(
images_original_shape_[2] * 2.0 >= images_scaled_shape_[2])
示例2: testRandomImageScale
# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_image_scale [as 別名]
def testRandomImageScale(self):
def graph_fn():
preprocess_options = [(preprocessor.random_image_scale, {})]
images_original = self.createTestImages()
tensor_dict = {fields.InputDataFields.image: images_original}
tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
images_scaled = tensor_dict[fields.InputDataFields.image]
images_original_shape = tf.shape(images_original)
images_scaled_shape = tf.shape(images_scaled)
return [images_original_shape, images_scaled_shape]
(images_original_shape_,
images_scaled_shape_) = self.execute_cpu(graph_fn, [])
self.assertLessEqual(images_original_shape_[1] * 0.5,
images_scaled_shape_[1])
self.assertGreaterEqual(images_original_shape_[1] * 2.0,
images_scaled_shape_[1])
self.assertLessEqual(images_original_shape_[2] * 0.5,
images_scaled_shape_[2])
self.assertGreaterEqual(images_original_shape_[2] * 2.0,
images_scaled_shape_[2])
示例3: test_build_random_image_scale
# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import random_image_scale [as 別名]
def test_build_random_image_scale(self):
preprocessor_text_proto = """
random_image_scale {
min_scale_ratio: 0.8
max_scale_ratio: 2.2
}
"""
preprocessor_proto = preprocessor_pb2.PreprocessingStep()
text_format.Merge(preprocessor_text_proto, preprocessor_proto)
function, args = preprocessor_builder.build(preprocessor_proto)
self.assertEqual(function, preprocessor.random_image_scale)
self.assert_dictionary_close(args, {'min_scale_ratio': 0.8,
'max_scale_ratio': 2.2})