當前位置: 首頁>>代碼示例>>Python>>正文


Python preprocessor.normalize_image方法代碼示例

本文整理匯總了Python中object_detection.core.preprocessor.normalize_image方法的典型用法代碼示例。如果您正苦於以下問題:Python preprocessor.normalize_image方法的具體用法?Python preprocessor.normalize_image怎麽用?Python preprocessor.normalize_image使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.preprocessor的用法示例。


在下文中一共展示了preprocessor.normalize_image方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testNormalizeImage

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:preprocessor_test.py

示例2: testRandomPixelValueScale

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:preprocessor_test.py

示例3: testRandomAdjustBrightness

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:preprocessor_test.py

示例4: testRandomAdjustContrast

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomAdjustContrast(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_contrast, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_contrast = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_contrast_shape = tf.shape(images_contrast)
    with self.test_session() as sess:
      (image_original_shape_, image_contrast_shape_) = sess.run(
          [image_original_shape, image_contrast_shape])
      self.assertAllEqual(image_original_shape_, image_contrast_shape_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:preprocessor_test.py

示例5: testRandomAdjustHue

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:preprocessor_test.py

示例6: testRandomBlackPatches

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomBlackPatches(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_black_patches, {
        'size_to_image_ratio': 0.5
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    blacked_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    blacked_images = blacked_tensor_dict[fields.InputDataFields.image]
    images_shape = tf.shape(images)
    blacked_images_shape = tf.shape(blacked_images)

    with self.test_session() as sess:
      (images_shape_, blacked_images_shape_) = sess.run(
          [images_shape, blacked_images_shape])
      self.assertAllEqual(images_shape_, blacked_images_shape_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:25,代碼來源:preprocessor_test.py

示例7: testRandomResizeMethod

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomResizeMethod(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_resize_method, {
        'target_size': (75, 150)
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    resized_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    resized_images = resized_tensor_dict[fields.InputDataFields.image]
    resized_images_shape = tf.shape(resized_images)
    expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32)

    with self.test_session() as sess:
      (expected_images_shape_, resized_images_shape_) = sess.run(
          [expected_images_shape, resized_images_shape])
      self.assertAllEqual(expected_images_shape_,
                          resized_images_shape_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:preprocessor_test.py

示例8: test_build_normalize_image

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def test_build_normalize_image(self):
    preprocessor_text_proto = """
    normalize_image {
      original_minval: 0.0
      original_maxval: 255.0
      target_minval: -1.0
      target_maxval: 1.0
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.normalize_image)
    self.assertEqual(args, {
        'original_minval': 0.0,
        'original_maxval': 255.0,
        'target_minval': -1.0,
        'target_maxval': 1.0,
    }) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:preprocessor_builder_test.py

示例9: testRandomDistortColor

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomDistortColor(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_distort_color, {}))
    images_original = self.createTestImages()
    images_original_shape = tf.shape(images_original)
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_distorted_color = tensor_dict[fields.InputDataFields.image]
    images_distorted_color_shape = tf.shape(images_distorted_color)
    with self.test_session() as sess:
      (images_original_shape_, images_distorted_color_shape_) = sess.run(
          [images_original_shape, images_distorted_color_shape])
      self.assertAllEqual(images_original_shape_, images_distorted_color_shape_) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:21,代碼來源:preprocessor_test.py

示例10: testRandomCropImage

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomCropImage(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_crop_image, {}))
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)
    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    self.assertEqual(3, distorted_images.get_shape()[3])

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run([
           boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
       ])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:35,代碼來源:preprocessor_test.py

示例11: testRandomCropImageGrayscale

# 需要導入模塊: from object_detection.core import preprocessor [as 別名]
# 或者: from object_detection.core.preprocessor import normalize_image [as 別名]
def testRandomCropImageGrayscale(self):
    preprocessing_options = [(preprocessor.rgb_to_gray, {}),
                             (preprocessor.normalize_image, {
                                 'original_minval': 0,
                                 'original_maxval': 255,
                                 'target_minval': 0,
                                 'target_maxval': 1,
                             }),
                             (preprocessor.random_crop_image, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels
    }
    distorted_tensor_dict = preprocessor.preprocess(
        tensor_dict, preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)
    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    self.assertEqual(1, distorted_images.get_shape()[3])

    with self.test_session() as sess:
      session_results = sess.run([
          boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank
      ])
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = session_results
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:38,代碼來源:preprocessor_test.py


注:本文中的object_detection.core.preprocessor.normalize_image方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。