當前位置: 首頁>>代碼示例>>Python>>正文


Python post_processing.batch_multiclass_non_max_suppression方法代碼示例

本文整理匯總了Python中object_detection.core.post_processing.batch_multiclass_non_max_suppression方法的典型用法代碼示例。如果您正苦於以下問題:Python post_processing.batch_multiclass_non_max_suppression方法的具體用法?Python post_processing.batch_multiclass_non_max_suppression怎麽用?Python post_processing.batch_multiclass_non_max_suppression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.post_processing的用法示例。


在下文中一共展示了post_processing.batch_multiclass_non_max_suppression方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_batch_multiclass_nms_with_batch_size_1

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def test_batch_multiclass_nms_with_batch_size_1(self):
    boxes = tf.constant([[[[0, 0, 1, 1], [0, 0, 4, 5]],
                          [[0, 0.1, 1, 1.1], [0, 0.1, 2, 1.1]],
                          [[0, -0.1, 1, 0.9], [0, -0.1, 1, 0.9]],
                          [[0, 10, 1, 11], [0, 10, 1, 11]],
                          [[0, 10.1, 1, 11.1], [0, 10.1, 1, 11.1]],
                          [[0, 100, 1, 101], [0, 100, 1, 101]],
                          [[0, 1000, 1, 1002], [0, 999, 2, 1004]],
                          [[0, 1000, 1, 1002.1], [0, 999, 2, 1002.7]]]],
                        tf.float32)
    scores = tf.constant([[[.9, 0.01], [.75, 0.05],
                           [.6, 0.01], [.95, 0],
                           [.5, 0.01], [.3, 0.01],
                           [.01, .85], [.01, .5]]])
    score_thresh = 0.1
    iou_thresh = .5
    max_output_size = 4

    exp_nms_corners = [[[0, 10, 1, 11],
                        [0, 0, 1, 1],
                        [0, 999, 2, 1004],
                        [0, 100, 1, 101]]]
    exp_nms_scores = [[.95, .9, .85, .3]]
    exp_nms_classes = [[0, 0, 1, 0]]

    nms_dict = post_processing.batch_multiclass_non_max_suppression(
        boxes, scores, score_thresh, iou_thresh,
        max_size_per_class=max_output_size, max_total_size=max_output_size)
    with self.test_session() as sess:
      nms_output = sess.run(nms_dict)
      self.assertAllClose(nms_output['detection_boxes'], exp_nms_corners)
      self.assertAllClose(nms_output['detection_scores'], exp_nms_scores)
      self.assertAllClose(nms_output['detection_classes'], exp_nms_classes)
      self.assertEqual(nms_output['num_detections'], [4]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:36,代碼來源:post_processing_test.py

示例2: test_batch_multiclass_nms_with_batch_size_2

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def test_batch_multiclass_nms_with_batch_size_2(self):
    boxes = tf.constant([[[[0, 0, 1, 1], [0, 0, 4, 5]],
                          [[0, 0.1, 1, 1.1], [0, 0.1, 2, 1.1]],
                          [[0, -0.1, 1, 0.9], [0, -0.1, 1, 0.9]],
                          [[0, 10, 1, 11], [0, 10, 1, 11]]],
                         [[[0, 10.1, 1, 11.1], [0, 10.1, 1, 11.1]],
                          [[0, 100, 1, 101], [0, 100, 1, 101]],
                          [[0, 1000, 1, 1002], [0, 999, 2, 1004]],
                          [[0, 1000, 1, 1002.1], [0, 999, 2, 1002.7]]]],
                        tf.float32)
    scores = tf.constant([[[.9, 0.01], [.75, 0.05],
                           [.6, 0.01], [.95, 0]],
                          [[.5, 0.01], [.3, 0.01],
                           [.01, .85], [.01, .5]]])
    score_thresh = 0.1
    iou_thresh = .5
    max_output_size = 4

    exp_nms_corners = [[[0, 10, 1, 11],
                        [0, 0, 1, 1],
                        [0, 0, 0, 0],
                        [0, 0, 0, 0]],
                       [[0, 999, 2, 1004],
                        [0, 10.1, 1, 11.1],
                        [0, 100, 1, 101],
                        [0, 0, 0, 0]]]
    exp_nms_scores = [[.95, .9, 0, 0],
                      [.85, .5, .3, 0]]
    exp_nms_classes = [[0, 0, 0, 0],
                       [1, 0, 0, 0]]

    nms_dict = post_processing.batch_multiclass_non_max_suppression(
        boxes, scores, score_thresh, iou_thresh,
        max_size_per_class=max_output_size, max_total_size=max_output_size)
    with self.test_session() as sess:
      nms_output = sess.run(nms_dict)
      self.assertAllClose(nms_output['detection_boxes'], exp_nms_corners)
      self.assertAllClose(nms_output['detection_scores'], exp_nms_scores)
      self.assertAllClose(nms_output['detection_classes'], exp_nms_classes)
      self.assertAllClose(nms_output['num_detections'], [2, 3]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:42,代碼來源:post_processing_test.py

示例3: _build_non_max_suppressor

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def _build_non_max_suppressor(nms_config):
  """Builds non-max suppresson based on the nms config.

  Args:
    nms_config: post_processing_pb2.PostProcessing.BatchNonMaxSuppression proto.

  Returns:
    non_max_suppressor_fn: Callable non-max suppressor.

  Raises:
    ValueError: On incorrect iou_threshold or on incompatible values of
      max_total_detections and max_detections_per_class.
  """
  if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
    raise ValueError('iou_threshold not in [0, 1.0].')
  if nms_config.max_detections_per_class > nms_config.max_total_detections:
    raise ValueError('max_detections_per_class should be no greater than '
                     'max_total_detections.')

  non_max_suppressor_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=nms_config.score_threshold,
      iou_thresh=nms_config.iou_threshold,
      max_size_per_class=nms_config.max_detections_per_class,
      max_total_size=nms_config.max_total_detections)
  return non_max_suppressor_fn 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:28,代碼來源:post_processing_builder.py

示例4: build

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def build(post_processing_config):
  """Builds callables for post-processing operations.

  Builds callables for non-max suppression and score conversion based on the
  configuration.

  Non-max suppression callable takes `boxes`, `scores`, and optionally
  `clip_window`, `parallel_iterations` `masks, and `scope` as inputs. It returns
  `nms_boxes`, `nms_scores`, `nms_classes` `nms_masks` and `num_detections`. See
  post_processing.batch_multiclass_non_max_suppression for the type and shape
  of these tensors.

  Score converter callable should be called with `input` tensor. The callable
  returns the output from one of 3 tf operations based on the configuration -
  tf.identity, tf.sigmoid or tf.nn.softmax. See tensorflow documentation for
  argument and return value descriptions.

  Args:
    post_processing_config: post_processing.proto object containing the
      parameters for the post-processing operations.

  Returns:
    non_max_suppressor_fn: Callable for non-max suppression.
    score_converter_fn: Callable for score conversion.

  Raises:
    ValueError: if the post_processing_config is of incorrect type.
  """
  if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
    raise ValueError('post_processing_config not of type '
                     'post_processing_pb2.Postprocessing.')
  non_max_suppressor_fn = _build_non_max_suppressor(
      post_processing_config.batch_non_max_suppression)
  score_converter_fn = _build_score_converter(
      post_processing_config.score_converter,
      post_processing_config.logit_scale)
  return non_max_suppressor_fn, score_converter_fn 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:post_processing_builder.py

示例5: test_batch_multiclass_nms_with_batch_size_1

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def test_batch_multiclass_nms_with_batch_size_1(self):
    boxes = tf.constant([[[[0, 0, 1, 1], [0, 0, 4, 5]],
                          [[0, 0.1, 1, 1.1], [0, 0.1, 2, 1.1]],
                          [[0, -0.1, 1, 0.9], [0, -0.1, 1, 0.9]],
                          [[0, 10, 1, 11], [0, 10, 1, 11]],
                          [[0, 10.1, 1, 11.1], [0, 10.1, 1, 11.1]],
                          [[0, 100, 1, 101], [0, 100, 1, 101]],
                          [[0, 1000, 1, 1002], [0, 999, 2, 1004]],
                          [[0, 1000, 1, 1002.1], [0, 999, 2, 1002.7]]]],
                        tf.float32)
    scores = tf.constant([[[.9, 0.01], [.75, 0.05],
                           [.6, 0.01], [.95, 0],
                           [.5, 0.01], [.3, 0.01],
                           [.01, .85], [.01, .5]]])
    score_thresh = 0.1
    iou_thresh = .5
    max_output_size = 4

    exp_nms_corners = [[[0, 10, 1, 11],
                        [0, 0, 1, 1],
                        [0, 999, 2, 1004],
                        [0, 100, 1, 101]]]
    exp_nms_scores = [[.95, .9, .85, .3]]
    exp_nms_classes = [[0, 0, 1, 0]]

    (nmsed_boxes, nmsed_scores, nmsed_classes, nmsed_masks,
     num_detections) = post_processing.batch_multiclass_non_max_suppression(
         boxes, scores, score_thresh, iou_thresh,
         max_size_per_class=max_output_size, max_total_size=max_output_size)

    self.assertIsNone(nmsed_masks)

    with self.test_session() as sess:
      (nmsed_boxes, nmsed_scores, nmsed_classes,
       num_detections) = sess.run([nmsed_boxes, nmsed_scores, nmsed_classes,
                                   num_detections])
      self.assertAllClose(nmsed_boxes, exp_nms_corners)
      self.assertAllClose(nmsed_scores, exp_nms_scores)
      self.assertAllClose(nmsed_classes, exp_nms_classes)
      self.assertEqual(num_detections, [4]) 
開發者ID:maartensukel,項目名稱:garbage-object-detection-tensorflow,代碼行數:42,代碼來源:post_processing_test.py

示例6: build

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def build(post_processing_config):
  """Builds callables for post-processing operations.

  Builds callables for non-max suppression and score conversion based on the
  configuration.

  Non-max suppression callable takes `boxes`, `scores`, and optionally
  `clip_window`, `parallel_iterations` and `scope` as inputs. It returns
  `nms_boxes`, `nms_scores`, `nms_nms_classes` and `num_detections`. See
  post_processing.batch_multiclass_non_max_suppression for the type and shape
  of these tensors.

  Score converter callable should be called with `input` tensor. The callable
  returns the output from one of 3 tf operations based on the configuration -
  tf.identity, tf.sigmoid or tf.nn.softmax. See tensorflow documentation for
  argument and return value descriptions.

  Args:
    post_processing_config: post_processing.proto object containing the
      parameters for the post-processing operations.

  Returns:
    non_max_suppressor_fn: Callable for non-max suppression.
    score_converter_fn: Callable for score conversion.

  Raises:
    ValueError: if the post_processing_config is of incorrect type.
  """
  if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
    raise ValueError('post_processing_config not of type '
                     'post_processing_pb2.Postprocessing.')
  non_max_suppressor_fn = _build_non_max_suppressor(
      post_processing_config.batch_non_max_suppression)
  score_converter_fn = _build_score_converter(
      post_processing_config.score_converter)
  return non_max_suppressor_fn, score_converter_fn 
開發者ID:maartensukel,項目名稱:garbage-object-detection-tensorflow,代碼行數:38,代碼來源:post_processing_builder.py

示例7: setUp

# 需要導入模塊: from object_detection.core import post_processing [as 別名]
# 或者: from object_detection.core.post_processing import batch_multiclass_non_max_suppression [as 別名]
def setUp(self):
    """Set up mock SSD model.

    Here we set up a simple mock SSD model that will always predict 4
    detections that happen to always be exactly the anchors that are set up
    in the above MockAnchorGenerator.  Because we let max_detections=5,
    we will also always end up with an extra padded row in the detection
    results.
    """
    is_training = False
    self._num_classes = 1
    mock_anchor_generator = MockAnchorGenerator2x2()
    mock_box_predictor = test_utils.MockBoxPredictor(
        is_training, self._num_classes)
    mock_box_coder = test_utils.MockBoxCoder()
    fake_feature_extractor = FakeSSDFeatureExtractor()
    mock_matcher = test_utils.MockMatcher()
    region_similarity_calculator = sim_calc.IouSimilarity()

    def image_resizer_fn(image):
      return tf.identity(image)

    classification_loss = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=True)
    localization_loss = losses.WeightedSmoothL1LocalizationLoss(
        anchorwise_output=True)
    non_max_suppression_fn = functools.partial(
        post_processing.batch_multiclass_non_max_suppression,
        score_thresh=-20.0,
        iou_thresh=1.0,
        max_size_per_class=5,
        max_total_size=5)
    classification_loss_weight = 1.0
    localization_loss_weight = 1.0
    normalize_loss_by_num_matches = False

    # This hard example miner is expected to be a no-op.
    hard_example_miner = losses.HardExampleMiner(
        num_hard_examples=None,
        iou_threshold=1.0)

    self._num_anchors = 4
    self._code_size = 4
    self._model = ssd_meta_arch.SSDMetaArch(
        is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder,
        fake_feature_extractor, mock_matcher, region_similarity_calculator,
        image_resizer_fn, non_max_suppression_fn, tf.identity,
        classification_loss, localization_loss, classification_loss_weight,
        localization_loss_weight, normalize_loss_by_num_matches,
        hard_example_miner) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:52,代碼來源:ssd_meta_arch_test.py


注:本文中的object_detection.core.post_processing.batch_multiclass_non_max_suppression方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。