當前位置: 首頁>>代碼示例>>Python>>正文


Python losses.WeightedSigmoidClassificationLoss方法代碼示例

本文整理匯總了Python中object_detection.core.losses.WeightedSigmoidClassificationLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python losses.WeightedSigmoidClassificationLoss方法的具體用法?Python losses.WeightedSigmoidClassificationLoss怎麽用?Python losses.WeightedSigmoidClassificationLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.losses的用法示例。


在下文中一共展示了losses.WeightedSigmoidClassificationLoss方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_build_weighted_sigmoid_classification_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_build_weighted_sigmoid_classification_loss(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:losses_builder_test.py

示例2: test_anchorwise_output

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_anchorwise_output(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
          anchorwise_output: true
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss))
    predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]])
    targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]])
    weights = tf.constant([[1.0, 1.0]])
    loss = classification_loss(predictions, targets, weights=weights)
    self.assertEqual(loss.shape, [1, 2]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:losses_builder_test.py

示例3: testHardExamplesProduceLossComparableToSigmoidXEntropy

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testHardExamplesProduceLossComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor,
                                             weights=weights), axis=2)
    sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor,
                                                 target_tensor,
                                                 weights=weights), axis=2)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAllClose(order_of_ratio, [[1., 1., 1., 1., 1.]]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:27,代碼來源:losses_test.py

示例4: testNonAnchorWiseOutputComparableToSigmoidXEntropy

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testNonAnchorWiseOutputComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[[1], [1], [1], [1], [1]]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor,
                                             weights=weights))
    sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor,
                                                 target_tensor,
                                                 weights=weights))

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAlmostEqual(order_of_ratio, 1.) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:27,代碼來源:losses_test.py

示例5: test_build_weighted_sigmoid_classification_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_build_weighted_sigmoid_classification_loss(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:18,代碼來源:losses_builder_test.py

示例6: test_anchorwise_output

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_anchorwise_output(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
          anchorwise_output: true
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss))
    predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]])
    targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]])
    weights = tf.constant([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]])
    loss = classification_loss(predictions, targets, weights=weights)
    self.assertEqual(loss.shape, [1, 2, 3]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:losses_builder_test.py

示例7: testHardExamplesProduceLossComparableToSigmoidXEntropy

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testHardExamplesProduceLossComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor,
                                             weights=weights), axis=2)
    sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor,
                                                 target_tensor,
                                                 weights=weights), axis=2)

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAllClose(order_of_ratio, [[1., 1., 1., 1., 1.]]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:27,代碼來源:losses_test.py

示例8: testNonAnchorWiseOutputComparableToSigmoidXEntropy

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testNonAnchorWiseOutputComparableToSigmoidXEntropy(self):
    prediction_tensor = tf.constant([[[_logit(0.55)],
                                      [_logit(0.52)],
                                      [_logit(0.50)],
                                      [_logit(0.48)],
                                      [_logit(0.45)]]], tf.float32)
    target_tensor = tf.constant([[[1],
                                  [1],
                                  [1],
                                  [0],
                                  [0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1, 1]], tf.float32)
    focal_loss_op = losses.SigmoidFocalClassificationLoss(gamma=2.0, alpha=None)
    sigmoid_loss_op = losses.WeightedSigmoidClassificationLoss()
    focal_loss = tf.reduce_sum(focal_loss_op(prediction_tensor, target_tensor,
                                             weights=weights))
    sigmoid_loss = tf.reduce_sum(sigmoid_loss_op(prediction_tensor,
                                                 target_tensor,
                                                 weights=weights))

    with self.test_session() as sess:
      sigmoid_loss, focal_loss = sess.run([sigmoid_loss, focal_loss])
      order_of_ratio = np.power(10,
                                np.floor(np.log10(sigmoid_loss / focal_loss)))
      self.assertAlmostEqual(order_of_ratio, 1.) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:27,代碼來源:losses_test.py

示例9: test_anchorwise_output

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_anchorwise_output(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
          anchorwise_output: true
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss))
    predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]])
    targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]])
    weights = tf.constant([[1.0, 1.0]])
    loss = classification_loss(predictions, targets, weights=weights)
    self.assertEqual(loss.shape, [1, 2, 3]) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:24,代碼來源:losses_builder_test.py

示例10: test_anchorwise_output

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def test_anchorwise_output(self):
    losses_text_proto = """
      classification_loss {
        weighted_sigmoid {
          anchorwise_output: true
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.WeightedSigmoidClassificationLoss))
    predictions = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.5, 0.5]]])
    targets = tf.constant([[[0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]])
    weights = tf.constant([[1.0, 1.0]])
    loss = classification_loss(predictions, targets, weights=weights)
    self.assertEqual(loss.shape, [1, 2, 3]) 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:24,代碼來源:losses_builder_test.py

示例11: __init__

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def __init__(self):
    super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
    self._classification_loss = losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=True)
    self._localization_loss = losses.WeightedSmoothL1LocalizationLoss(
        anchorwise_output=True) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:8,代碼來源:trainer_test.py

示例12: testReturnsCorrectLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    loss_op = losses.WeightedSigmoidClassificationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)

    exp_loss = -2 * math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:28,代碼來源:losses_test.py

示例13: testReturnsCorrectAnchorWiseLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectAnchorWiseLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    loss_op = losses.WeightedSigmoidClassificationLoss(True)
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)

    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:losses_test.py

示例14: testReturnsCorrectLossWithClassIndices

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossWithClassIndices(self):
    prediction_tensor = tf.constant([[[-100, 100, -100, 100],
                                      [100, -100, -100, -100],
                                      [100, 0, -100, 100],
                                      [-100, -100, 100, -100]],
                                     [[-100, 0, 100, 100],
                                      [-100, 100, -100, 100],
                                      [100, 100, 100, 100],
                                      [0, 0, -1, 100]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0, 0],
                                  [1, 0, 0, 1],
                                  [1, 0, 0, 0],
                                  [0, 0, 1, 1]],
                                 [[0, 0, 1, 0],
                                  [0, 1, 0, 0],
                                  [1, 1, 1, 0],
                                  [1, 0, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    # Ignores the last class.
    class_indices = tf.constant([0, 1, 2], tf.int32)
    loss_op = losses.WeightedSigmoidClassificationLoss(True)
    loss = loss_op(prediction_tensor, target_tensor, weights=weights,
                   class_indices=class_indices)

    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:32,代碼來源:losses_test.py

示例15: __init__

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedSigmoidClassificationLoss [as 別名]
def __init__(self):
    super(FakeDetectionModel, self).__init__(num_classes=NUMBER_OF_CLASSES)
    self._classification_loss = losses.WeightedSigmoidClassificationLoss()
    self._localization_loss = losses.WeightedSmoothL1LocalizationLoss() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:6,代碼來源:trainer_test.py


注:本文中的object_detection.core.losses.WeightedSigmoidClassificationLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。