當前位置: 首頁>>代碼示例>>Python>>正文


Python losses.WeightedIOULocalizationLoss方法代碼示例

本文整理匯總了Python中object_detection.core.losses.WeightedIOULocalizationLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python losses.WeightedIOULocalizationLoss方法的具體用法?Python losses.WeightedIOULocalizationLoss怎麽用?Python losses.WeightedIOULocalizationLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.losses的用法示例。


在下文中一共展示了losses.WeightedIOULocalizationLoss方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_build_weighted_iou_localization_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def test_build_weighted_iou_localization_loss(self):
    losses_text_proto = """
      localization_loss {
        weighted_iou {
        }
      }
      classification_loss {
        weighted_softmax {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    _, localization_loss, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(localization_loss,
                               losses.WeightedIOULocalizationLoss)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:losses_builder_test.py

示例2: testReturnsCorrectLossWithNoLabels

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def testReturnsCorrectLossWithNoLabels(self):
    prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1],
                                      [0, 0, 1, 1],
                                      [0, 0, .5, .25]]])
    target_tensor = tf.constant([[[1.5, 0, 2.4, 1],
                                  [0, 0, 1, 1],
                                  [50, 50, 500.5, 100.25]]])
    weights = [[1.0, .5, 2.0]]
    losses_mask = tf.constant([False], tf.bool)
    loss_op = losses.WeightedIOULocalizationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights,
                   losses_mask=losses_mask)
    loss = tf.reduce_sum(loss)
    exp_loss = 0.0
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:19,代碼來源:losses_test.py

示例3: test_build_weighted_iou_localization_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def test_build_weighted_iou_localization_loss(self):
    losses_text_proto = """
      localization_loss {
        weighted_iou {
        }
      }
      classification_loss {
        weighted_softmax {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    _, localization_loss, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(localization_loss,
                               losses.WeightedIOULocalizationLoss)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:18,代碼來源:losses_builder_test.py

示例4: test_build_weighted_iou_localization_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def test_build_weighted_iou_localization_loss(self):
    losses_text_proto = """
      localization_loss {
        weighted_iou {
        }
      }
      classification_loss {
        weighted_softmax {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    _, localization_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(localization_loss,
                               losses.WeightedIOULocalizationLoss)) 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:18,代碼來源:losses_builder_test.py

示例5: testReturnsCorrectLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def testReturnsCorrectLoss(self):
    prediction_tensor = tf.constant([[[1.5, 0, 2.4, 1],
                                      [0, 0, 1, 1],
                                      [0, 0, .5, .25]]])
    target_tensor = tf.constant([[[1.5, 0, 2.4, 1],
                                  [0, 0, 1, 1],
                                  [50, 50, 500.5, 100.25]]])
    weights = [[1.0, .5, 2.0]]
    loss_op = losses.WeightedIOULocalizationLoss()
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    exp_loss = 2.0
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:16,代碼來源:losses_test.py

示例6: _build_localization_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import WeightedIOULocalizationLoss [as 別名]
def _build_localization_loss(loss_config):
  """Builds a localization loss based on the loss config.

  Args:
    loss_config: A losses_pb2.LocalizationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.LocalizationLoss):
    raise ValueError('loss_config not of type losses_pb2.LocalizationLoss.')

  loss_type = loss_config.WhichOneof('localization_loss')

  if loss_type == 'weighted_l2':
    config = loss_config.weighted_l2
    return losses.WeightedL2LocalizationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_smooth_l1':
    config = loss_config.weighted_smooth_l1
    return losses.WeightedSmoothL1LocalizationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_iou':
    return losses.WeightedIOULocalizationLoss()

  raise ValueError('Empty loss config.') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:losses_builder.py


注:本文中的object_detection.core.losses.WeightedIOULocalizationLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。