當前位置: 首頁>>代碼示例>>Python>>正文


Python losses.BootstrappedSigmoidClassificationLoss方法代碼示例

本文整理匯總了Python中object_detection.core.losses.BootstrappedSigmoidClassificationLoss方法的典型用法代碼示例。如果您正苦於以下問題:Python losses.BootstrappedSigmoidClassificationLoss方法的具體用法?Python losses.BootstrappedSigmoidClassificationLoss怎麽用?Python losses.BootstrappedSigmoidClassificationLoss使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.core.losses的用法示例。


在下文中一共展示了losses.BootstrappedSigmoidClassificationLoss方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_build_bootstrapped_sigmoid_classification_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def test_build_bootstrapped_sigmoid_classification_loss(self):
    losses_text_proto = """
      classification_loss {
        bootstrapped_sigmoid {
          alpha: 0.5
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.BootstrappedSigmoidClassificationLoss)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:losses_builder_test.py

示例2: test_build_bootstrapped_sigmoid_classification_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def test_build_bootstrapped_sigmoid_classification_loss(self):
    losses_text_proto = """
      classification_loss {
        bootstrapped_sigmoid {
          alpha: 0.5
        }
      }
      localization_loss {
        weighted_l2 {
        }
      }
    """
    losses_proto = losses_pb2.Loss()
    text_format.Merge(losses_text_proto, losses_proto)
    classification_loss, _, _, _, _, _ = losses_builder.build(losses_proto)
    self.assertTrue(isinstance(classification_loss,
                               losses.BootstrappedSigmoidClassificationLoss)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:19,代碼來源:losses_builder_test.py

示例3: testReturnsCorrectLossSoftBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossSoftBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='soft')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:losses_test.py

示例4: testReturnsCorrectLossHardBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossHardBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:losses_test.py

示例5: testReturnsCorrectAnchorWiseLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectAnchorWiseLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard', anchorwise_output=True)
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)

    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:31,代碼來源:losses_test.py

示例6: _build_classification_loss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def _build_classification_loss(loss_config):
  """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
  if not isinstance(loss_config, losses_pb2.ClassificationLoss):
    raise ValueError('loss_config not of type losses_pb2.ClassificationLoss.')

  loss_type = loss_config.WhichOneof('classification_loss')

  if loss_type == 'weighted_sigmoid':
    config = loss_config.weighted_sigmoid
    return losses.WeightedSigmoidClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'weighted_softmax':
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        anchorwise_output=config.anchorwise_output)

  if loss_type == 'bootstrapped_sigmoid':
    config = loss_config.bootstrapped_sigmoid
    return losses.BootstrappedSigmoidClassificationLoss(
        alpha=config.alpha,
        bootstrap_type=('hard' if config.hard_bootstrap else 'soft'),
        anchorwise_output=config.anchorwise_output)

  raise ValueError('Empty loss config.') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:37,代碼來源:losses_builder.py

示例7: testReturnsCorrectLossSoftBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossSoftBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1]],
                           [[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [0, 0, 0]]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='soft')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:36,代碼來源:losses_test.py

示例8: testReturnsCorrectLossHardBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossHardBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1]],
                           [[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [0, 0, 0]]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:36,代碼來源:losses_test.py

示例9: testReturnsCorrectAnchorWiseLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectAnchorWiseLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1]],
                           [[1, 1, 1],
                            [1, 1, 1],
                            [1, 1, 1],
                            [0, 0, 0]]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss, axis=2)
    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:losses_test.py

示例10: testReturnsCorrectLossSoftBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossSoftBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='soft')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:30,代碼來源:losses_test.py

示例11: testReturnsCorrectLossHardBootstrapping

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectLossHardBootstrapping(self):
    prediction_tensor = tf.constant([[[-100, 100, 0],
                                      [100, -100, -100],
                                      [100, -100, -100],
                                      [-100, -100, 100]],
                                     [[-100, -100, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss)
    exp_loss = -math.log(.5)
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:30,代碼來源:losses_test.py

示例12: testReturnsCorrectAnchorWiseLoss

# 需要導入模塊: from object_detection.core import losses [as 別名]
# 或者: from object_detection.core.losses import BootstrappedSigmoidClassificationLoss [as 別名]
def testReturnsCorrectAnchorWiseLoss(self):
    prediction_tensor = tf.constant([[[-100, 100, -100],
                                      [100, -100, -100],
                                      [100, 0, -100],
                                      [-100, -100, 100]],
                                     [[-100, 0, 100],
                                      [-100, 100, -100],
                                      [100, 100, 100],
                                      [0, 0, -1]]], tf.float32)
    target_tensor = tf.constant([[[0, 1, 0],
                                  [1, 0, 0],
                                  [1, 0, 0],
                                  [0, 0, 1]],
                                 [[0, 0, 1],
                                  [0, 1, 0],
                                  [1, 1, 1],
                                  [1, 0, 0]]], tf.float32)
    weights = tf.constant([[1, 1, 1, 1],
                           [1, 1, 1, 0]], tf.float32)
    alpha = tf.constant(.5, tf.float32)
    loss_op = losses.BootstrappedSigmoidClassificationLoss(
        alpha, bootstrap_type='hard')
    loss = loss_op(prediction_tensor, target_tensor, weights=weights)
    loss = tf.reduce_sum(loss, axis=2)
    exp_loss = np.matrix([[0, 0, -math.log(.5), 0],
                          [-math.log(.5), 0, 0, 0]])
    with self.test_session() as sess:
      loss_output = sess.run(loss)
      self.assertAllClose(loss_output, exp_loss) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:31,代碼來源:losses_test.py


注:本文中的object_detection.core.losses.BootstrappedSigmoidClassificationLoss方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。