當前位置: 首頁>>代碼示例>>Python>>正文


Python post_processing_builder.build方法代碼示例

本文整理匯總了Python中object_detection.builders.post_processing_builder.build方法的典型用法代碼示例。如果您正苦於以下問題:Python post_processing_builder.build方法的具體用法?Python post_processing_builder.build怎麽用?Python post_processing_builder.build使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.builders.post_processing_builder的用法示例。


在下文中一共展示了post_processing_builder.build方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_build_non_max_suppressor_with_correct_parameters

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def test_build_non_max_suppressor_with_correct_parameters(self):
    post_processing_text_proto = """
      batch_non_max_suppression {
        score_threshold: 0.7
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    non_max_suppressor, _ = post_processing_builder.build(
        post_processing_config)
    self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
    self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
    self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
    self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:post_processing_builder_test.py

示例2: build

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:model_builder.py

示例3: _get_second_stage_box_predictor

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def _get_second_stage_box_predictor(self, num_classes, is_training,
                                      predict_masks, masks_are_class_agnostic):
    box_predictor_proto = box_predictor_pb2.BoxPredictor()
    text_format.Merge(self._get_second_stage_box_predictor_text_proto(),
                      box_predictor_proto)
    if predict_masks:
      text_format.Merge(
          self._add_mask_to_second_stage_box_predictor_text_proto(
              masks_are_class_agnostic),
          box_predictor_proto)

    return box_predictor_builder.build(
        hyperparams_builder.build,
        box_predictor_proto,
        num_classes=num_classes,
        is_training=is_training) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:18,代碼來源:faster_rcnn_meta_arch_test_lib.py

示例4: test_build_identity_score_converter_with_logit_scale

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def test_build_identity_score_converter_with_logit_scale(self):
    post_processing_text_proto = """
      score_converter: IDENTITY
      logit_scale: 2.0
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    _, score_converter = post_processing_builder.build(post_processing_config)
    self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')

    inputs = tf.constant([1, 1], tf.float32)
    outputs = score_converter(inputs)
    with self.test_session() as sess:
      converted_scores = sess.run(outputs)
      expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
      self.assertAllClose(converted_scores, expected_converted_scores) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:18,代碼來源:post_processing_builder_test.py

示例5: build

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training, add_summaries)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:25,代碼來源:model_builder.py

示例6: build

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training, add_summaries)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
                                    add_summaries)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:26,代碼來源:model_builder.py

示例7: _build_arg_scope_with_hyperparams

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def _build_arg_scope_with_hyperparams(self,
                                        hyperparams_text_proto,
                                        is_training):
    hyperparams = hyperparams_pb2.Hyperparams()
    text_format.Merge(hyperparams_text_proto, hyperparams)
    return hyperparams_builder.build(hyperparams, is_training=is_training) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:8,代碼來源:faster_rcnn_meta_arch_test_lib.py

示例8: _get_second_stage_box_predictor

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def _get_second_stage_box_predictor(self, num_classes, is_training):
    box_predictor_proto = box_predictor_pb2.BoxPredictor()
    text_format.Merge(self._get_second_stage_box_predictor_text_proto(),
                      box_predictor_proto)
    return box_predictor_builder.build(
        hyperparams_builder.build,
        box_predictor_proto,
        num_classes=num_classes,
        is_training=is_training) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:11,代碼來源:faster_rcnn_meta_arch_test_lib.py

示例9: test_build_identity_score_converter

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def test_build_identity_score_converter(self):
    post_processing_text_proto = """
      score_converter: IDENTITY
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    _, score_converter = post_processing_builder.build(post_processing_config)
    self.assertEqual(score_converter, tf.identity) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:post_processing_builder_test.py

示例10: test_build_sigmoid_score_converter

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def test_build_sigmoid_score_converter(self):
    post_processing_text_proto = """
      score_converter: SIGMOID
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    _, score_converter = post_processing_builder.build(post_processing_config)
    self.assertEqual(score_converter, tf.sigmoid) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:post_processing_builder_test.py

示例11: _build_ssd_feature_extractor

# 需要導入模塊: from object_detection.builders import post_processing_builder [as 別名]
# 或者: from object_detection.builders.post_processing_builder import build [as 別名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
                                 reuse_weights) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:model_builder.py


注:本文中的object_detection.builders.post_processing_builder.build方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。