本文整理匯總了Python中object_detection.builders.optimizer_builder.build方法的典型用法代碼示例。如果您正苦於以下問題:Python optimizer_builder.build方法的具體用法?Python optimizer_builder.build怎麽用?Python optimizer_builder.build使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.builders.optimizer_builder
的用法示例。
在下文中一共展示了optimizer_builder.build方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testBuildRMSPropOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildRMSPropOptimizer(self):
optimizer_text_proto = """
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
use_moving_average: false
"""
global_summaries = set([])
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer = optimizer_builder.build(optimizer_proto, global_summaries)
self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
示例2: testBuildMomentumOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMomentumOptimizer(self):
optimizer_text_proto = """
momentum_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.001
}
}
momentum_optimizer_value: 0.99
}
use_moving_average: false
"""
global_summaries = set([])
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer = optimizer_builder.build(optimizer_proto, global_summaries)
self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
示例3: testBuildAdamOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildAdamOptimizer(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: false
"""
global_summaries = set([])
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer = optimizer_builder.build(optimizer_proto, global_summaries)
self.assertTrue(isinstance(optimizer, tf.train.AdamOptimizer))
示例4: testBuildMovingAverageOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMovingAverageOptimizer(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
"""
global_summaries = set([])
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer = optimizer_builder.build(optimizer_proto, global_summaries)
self.assertTrue(
isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
示例5: testBuildMovingAverageOptimizerWithNonDefaultDecay
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
moving_average_decay: 0.2
"""
global_summaries = set([])
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer = optimizer_builder.build(optimizer_proto, global_summaries)
self.assertTrue(
isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
# TODO: Find a way to not depend on the private members.
self.assertAlmostEqual(optimizer._ema._decay, 0.2)
示例6: testBuildRMSPropOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildRMSPropOptimizer(self):
optimizer_text_proto = """
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
use_moving_average: false
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertTrue(isinstance(optimizer, tf.train.RMSPropOptimizer))
示例7: testBuildMomentumOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMomentumOptimizer(self):
optimizer_text_proto = """
momentum_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.001
}
}
momentum_optimizer_value: 0.99
}
use_moving_average: false
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertTrue(isinstance(optimizer, tf.train.MomentumOptimizer))
示例8: testBuildMovingAverageOptimizer
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMovingAverageOptimizer(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertTrue(
isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
示例9: testBuildMovingAverageOptimizerWithNonDefaultDecay
# 需要導入模塊: from object_detection.builders import optimizer_builder [as 別名]
# 或者: from object_detection.builders.optimizer_builder import build [as 別名]
def testBuildMovingAverageOptimizerWithNonDefaultDecay(self):
optimizer_text_proto = """
adam_optimizer: {
learning_rate: {
constant_learning_rate {
learning_rate: 0.002
}
}
}
use_moving_average: True
moving_average_decay: 0.2
"""
optimizer_proto = optimizer_pb2.Optimizer()
text_format.Merge(optimizer_text_proto, optimizer_proto)
optimizer, _ = optimizer_builder.build(optimizer_proto)
self.assertTrue(
isinstance(optimizer, tf.contrib.opt.MovingAverageOptimizer))
# TODO(rathodv): Find a way to not depend on the private members.
self.assertAlmostEqual(optimizer._ema._decay, 0.2)