當前位置: 首頁>>代碼示例>>Python>>正文


Python image_resizer_builder.build方法代碼示例

本文整理匯總了Python中object_detection.builders.image_resizer_builder.build方法的典型用法代碼示例。如果您正苦於以下問題:Python image_resizer_builder.build方法的具體用法?Python image_resizer_builder.build怎麽用?Python image_resizer_builder.build使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.builders.image_resizer_builder的用法示例。


在下文中一共展示了image_resizer_builder.build方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def build(model_config, is_training):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.

  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')
  meta_architecture = model_config.WhichOneof('model')
  if meta_architecture == 'ssd':
    return _build_ssd_model(model_config.ssd, is_training)
  if meta_architecture == 'faster_rcnn':
    return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
  raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:model_builder.py

示例2: _shape_of_resized_random_image_given_text_proto

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _shape_of_resized_random_image_given_text_proto(
      self, input_shape, text_proto):
    image_resizer_config = image_resizer_pb2.ImageResizer()
    text_format.Merge(text_proto, image_resizer_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    images = tf.to_float(tf.random_uniform(
        input_shape, minval=0, maxval=255, dtype=tf.int32))
    resized_images = image_resizer_fn(images)
    with self.test_session() as sess:
      return sess.run(resized_images).shape 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:12,代碼來源:image_resizer_builder_test.py

示例3: test_raises_error_on_invalid_input

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def test_raises_error_on_invalid_input(self):
    invalid_input = 'invalid_input'
    with self.assertRaises(ValueError):
      image_resizer_builder.build(invalid_input) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:6,代碼來源:image_resizer_builder_test.py

示例4: _build_ssd_feature_extractor

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(depth_multiplier, min_depth, conv_hyperparams,
                                 reuse_weights) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:model_builder.py

示例5: augment_input_data

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def augment_input_data(tensor_dict, data_augmentation_options):
  """Applies data augmentation ops to input tensors.

  Args:
    tensor_dict: A dictionary of input tensors keyed by fields.InputDataFields.
    data_augmentation_options: A list of tuples, where each tuple contains a
      function and a dictionary that contains arguments and their values.
      Usually, this is the output of core/preprocessor.build.

  Returns:
    A dictionary of tensors obtained by applying data augmentation ops to the
    input tensor dictionary.
  """
  tensor_dict[fields.InputDataFields.image] = tf.expand_dims(
      tf.to_float(tensor_dict[fields.InputDataFields.image]), 0)

  include_instance_masks = (fields.InputDataFields.groundtruth_instance_masks
                            in tensor_dict)
  include_keypoints = (fields.InputDataFields.groundtruth_keypoints
                       in tensor_dict)
  tensor_dict = preprocessor.preprocess(
      tensor_dict, data_augmentation_options,
      func_arg_map=preprocessor.get_default_func_arg_map(
          include_instance_masks=include_instance_masks,
          include_keypoints=include_keypoints))
  tensor_dict[fields.InputDataFields.image] = tf.squeeze(
      tensor_dict[fields.InputDataFields.image], axis=0)
  return tensor_dict 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:30,代碼來源:inputs.py

示例6: _shape_of_resized_random_image_given_text_proto

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _shape_of_resized_random_image_given_text_proto(self, input_shape,
                                                      text_proto):
    image_resizer_config = image_resizer_pb2.ImageResizer()
    text_format.Merge(text_proto, image_resizer_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    images = tf.to_float(
        tf.random_uniform(input_shape, minval=0, maxval=255, dtype=tf.int32))
    resized_images, _ = image_resizer_fn(images)
    with self.test_session() as sess:
      return sess.run(resized_images).shape 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:12,代碼來源:image_resizer_builder_test.py

示例7: _resized_image_given_text_proto

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _resized_image_given_text_proto(self, image, text_proto):
    image_resizer_config = image_resizer_pb2.ImageResizer()
    text_format.Merge(text_proto, image_resizer_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)
    image_placeholder = tf.placeholder(tf.uint8, [1, None, None, 3])
    resized_image, _ = image_resizer_fn(image_placeholder)
    with self.test_session() as sess:
      return sess.run(resized_image, feed_dict={image_placeholder: image}) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:10,代碼來源:image_resizer_builder_test.py

示例8: _build_ssd_feature_extractor

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  pad_to_multiple = feature_extractor_config.pad_to_multiple
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
  use_explicit_padding = feature_extractor_config.use_explicit_padding
  use_depthwise = feature_extractor_config.use_depthwise
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(is_training, depth_multiplier, min_depth,
                                 pad_to_multiple, conv_hyperparams,
                                 batch_norm_trainable, reuse_weights,
                                 use_explicit_padding, use_depthwise) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:35,代碼來源:model_builder.py

示例9: _build_ssd_feature_extractor

# 需要導入模塊: from object_detection.builders import image_resizer_builder [as 別名]
# 或者: from object_detection.builders.image_resizer_builder import build [as 別名]
def _build_ssd_feature_extractor(feature_extractor_config, is_training,
                                 reuse_weights=None):
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
  pad_to_multiple = feature_extractor_config.pad_to_multiple
  use_explicit_padding = feature_extractor_config.use_explicit_padding
  use_depthwise = feature_extractor_config.use_depthwise
  conv_hyperparams = hyperparams_builder.build(
      feature_extractor_config.conv_hyperparams, is_training)
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)

  if feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

  feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
  return feature_extractor_class(
      is_training, depth_multiplier, min_depth, pad_to_multiple,
      conv_hyperparams, reuse_weights, use_explicit_padding, use_depthwise,
      override_base_feature_extractor_hyperparams) 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:36,代碼來源:model_builder.py


注:本文中的object_detection.builders.image_resizer_builder.build方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。