當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.nvJPEGDecoder方法代碼示例

本文整理匯總了Python中nvidia.dali.ops.nvJPEGDecoder方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.nvJPEGDecoder方法的具體用法?Python ops.nvJPEGDecoder怎麽用?Python ops.nvJPEGDecoder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nvidia.dali.ops的用法示例。


在下文中一共展示了ops.nvJPEGDecoder方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import nvJPEGDecoder [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.rrc = ops.RandomResizedCrop(device = "gpu", size = crop_shape)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:23,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import nvJPEGDecoder [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = False)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
        self.res = ops.Resize(device = "gpu", resize_shorter = size)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                output_dtype = types.FLOAT,
                output_layout = types.NCHW,
                crop = (crop, crop),
                image_type = types.RGB,
                mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                std = [0.229 * 255,0.224 * 255,0.225 * 255]) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:26,代碼來源:dataloaders.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import nvJPEGDecoder [as 別名]
def __init__(self, name, batch_size, num_workers, device_id, num_gpu,
                 root=os.path.expanduser('~/.mxnet/datasets/face')):
        super().__init__(batch_size, num_workers, device_id, seed=12 + device_id)

        idx_files = [os.path.join(root, name, "train.idx")]
        rec_files = [os.path.join(root, name, "train.rec")]
        prop = open(os.path.join(root, name, "property"), "r").read().strip().split(',')
        assert len(prop) == 3
        self.num_classes = int(prop[0])
        self.image_size = [int(prop[1]), int(prop[2])]

        self._input = ops.MXNetReader(path=rec_files, index_path=idx_files, random_shuffle=True,
                                      num_shards=num_gpu, tensor_init_bytes=self.image_size[0] * self.image_size[1] * 8)
        self._decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)

        self._cmnp = ops.CropMirrorNormalize(device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW,
                                             crop=self.image_size, image_type=types.RGB,
                                             mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5])
        self._contrast = ops.Contrast(device="gpu", )
        self._saturation = ops.Saturation(device="gpu", )
        self._brightness = ops.Brightness(device="gpu", )

        self._uniform = ops.Uniform(range=(0.7, 1.3))
        self._coin = ops.CoinFlip(probability=0.5)
        self.iter = 0 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:27,代碼來源:dali_utils.py

示例4: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import nvJPEGDecoder [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12, resize_shp=None,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):

        super(HybridValPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id,
                prefetch_queue_depth = prefetch_queue)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=False, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.resize = ops.Resize(device = "gpu", resize_shorter=resize_shp) if resize_shp else None

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RESIZE_ASPECT_PRESERVING)
            mx_resnet_print(
                    key=mlperf_log.INPUT_CENTRAL_CROP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:dali.py


注:本文中的nvidia.dali.ops.nvJPEGDecoder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。