當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.Resize方法代碼示例

本文整理匯總了Python中nvidia.dali.ops.Resize方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.Resize方法的具體用法?Python ops.Resize怎麽用?Python ops.Resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nvidia.dali.ops的用法示例。


在下文中一共展示了ops.Resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 resize_shp=None,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=False, shard_id=shard_id, num_shards=num_shards)
        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.resize = ops.Resize(device = "gpu", resize_shorter=resize_shp) if resize_shp else None
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:22,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, file_list, file_root, crop_size,
                 batch_size, n_threads, device_id,
                 random_shuffle=False, seed=-1, mean=None, std=None,
                 n_samples=None):
        super(DaliPipelineVal, self).__init__(batch_size, n_threads,
                                              device_id, seed=seed)
        crop_size = _pair(crop_size)
        if mean is None:
            mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
        if std is None:
            std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
        if n_samples is None:
            initial_fill = 512
        else:
            initial_fill = min(512, n_samples)
        self.loader = ops.FileReader(file_root=file_root, file_list=file_list,
                                     random_shuffle=random_shuffle,
                                     initial_fill=initial_fill)
        self.decode = ops.HostDecoder()
        self.resize = ops.Resize(device='gpu', resize_x=256, resize_y=256)
        self.cmnorm = ops.CropMirrorNormalize(
            device='gpu', crop=list(crop_size), mean=mean, std=std) 
開發者ID:chainer,項目名稱:chainer,代碼行數:24,代碼來源:dali_util.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = False)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB)
        self.res = ops.Resize(device = "gpu", resize_shorter = size)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                output_dtype = types.FLOAT,
                output_layout = types.NCHW,
                crop = (crop, crop),
                image_type = types.RGB,
                mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                std = [0.229 * 255,0.224 * 255,0.225 * 255]) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:26,代碼來源:dataloaders.py

示例4: get_pytorch_val_loader

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def get_pytorch_val_loader(data_path, batch_size, workers=5, _worker_init_fn=None, input_size=224):
    valdir = os.path.join(data_path, 'val')
    val_dataset = datasets.ImageFolder(
            valdir, transforms.Compose([
                transforms.Resize(int(input_size / 0.875)),
                transforms.CenterCrop(input_size),
                ]))

    if torch.distributed.is_initialized():
        val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
    else:
        val_sampler = None

    val_loader = torch.utils.data.DataLoader(
            val_dataset,
            sampler=val_sampler,
            batch_size=batch_size, shuffle=False,
            num_workers=workers, worker_init_fn=_worker_init_fn, pin_memory=True,
            collate_fn=fast_collate)

    return PrefetchedWrapper(val_loader), len(val_loader) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:23,代碼來源:dataloaders.py

示例5: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size, seed=12, local_rank=0, world_size=1,
                 spos_pre=False, shuffle=False):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size,
                                    random_shuffle=shuffle)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.Resize(device="gpu", resize_shorter=size,
                              interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            crop=(crop, crop),
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255]) 
開發者ID:microsoft,項目名稱:nni,代碼行數:18,代碼來源:dataloader.py

示例6: imgnet_transform

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def imgnet_transform(is_training=True):
    if is_training:
        transform_list = transforms.Compose([transforms.RandomResizedCrop(224),
                                             transforms.RandomHorizontalFlip(),
                                             transforms.ColorJitter(brightness=0.5,
                                                                    contrast=0.5,
                                                                    saturation=0.3),
                                             transforms.ToTensor(),
                                             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                                                  std=[0.229, 0.224, 0.225])])
    else:
        transform_list = transforms.Compose([transforms.Resize(256),
                                             transforms.CenterCrop(224),
                                             transforms.ToTensor(),
                                             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                                                  std=[0.229, 0.224, 0.225])])
    return transform_list 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:19,代碼來源:preprocess.py

示例7: get_imagenet_iter_torch

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def get_imagenet_iter_torch(type, image_dir, batch_size, num_threads, device_id, num_gpus, crop, val_size=256,
                            world_size=1, local_rank=0):
    if type == 'train':
        transform = transforms.Compose([
            transforms.RandomResizedCrop(crop, scale=(0.08, 1.25)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        dataset = datasets.ImageFolder(image_dir + '/train', transform)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_threads,
                                                 pin_memory=True)
    else:
        transform = transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        dataset = datasets.ImageFolder(image_dir + '/val', transform)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_threads,
                                                 pin_memory=True)
    return dataloader 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:25,代碼來源:preprocess.py

示例8: define_graph

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def define_graph(self):
        rng = self.coin()
        self.jpegs, self.labels = self.input(name="Reader")

        # Combined decode & random crop
        images = self.decode(self.jpegs)

        # Resize as desired
        images = self.res(images)

        if self.dali_device == "gpu":
            output = self.cmn(images, mirror=rng)
        else:
            # CPU backend uses torch to apply mean & std
            output = self.flip(images, horizontal=rng)

        self.labels = self.labels.gpu()
        return [output, self.labels] 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:20,代碼來源:dali.py

示例9: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(
            self, batch_size, num_threads, shard_id, image_dir, file_list,
            nvjpeg_padding, seed=1, num_shards=1, channel_last=True,
            spatial_size=(224, 224), dtype='half',
            mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(ValPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=False, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)
        resize_shorter = round(256 / 224 * spatial_size[0] / 2) * 2
        self.res = ops.Resize(device="gpu", resize_shorter=resize_shorter)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output) 
開發者ID:sony,項目名稱:nnabla-examples,代碼行數:24,代碼來源:data.py

示例10: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12, resize_shp=None,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):

        super(HybridValPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id,
                prefetch_queue_depth = prefetch_queue)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=False, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.resize = ops.Resize(device = "gpu", resize_shorter=resize_shp) if resize_shp else None

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RESIZE_ASPECT_PRESERVING)
            mx_resnet_print(
                    key=mlperf_log.INPUT_CENTRAL_CROP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:dali.py

示例11: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, device_id, file_root, annotations_file, num_gpus,
            output_fp16=False, output_nhwc=False, pad_output=False, num_threads=1, seed=15):
        super(COCOPipeline, self).__init__(batch_size=batch_size, device_id=device_id,
                                           num_threads=num_threads, seed = seed)

        try:
            shard_id = torch.distributed.get_rank()
        except RuntimeError:
            shard_id = 0

        self.input = ops.COCOReader(file_root = file_root, annotations_file = annotations_file,
                            shard_id = shard_id, num_shards = num_gpus, ratio=True, ltrb=True, random_shuffle=True)
        self.decode = ops.HostDecoder(device = "cpu", output_type = types.RGB)

        # Augumentation techniques
        self.crop = ops.SSDRandomCrop(device="cpu", num_attempts=1)
        self.twist = ops.ColorTwist(device="gpu")

        self.resize = ops.Resize(device = "gpu", resize_x = 300, resize_y = 300)

        output_dtype = types.FLOAT16 if output_fp16 else types.FLOAT
        output_layout = types.NHWC if output_nhwc else types.NCHW

        self.normalize = ops.CropMirrorNormalize(device="gpu", crop=(300, 300),
                                                 mean=[0.0, 0.0, 0.0],
                                                 std=[255.0, 255.0, 255.0],
                                                 mirror=0,
                                                 output_dtype=output_dtype,
                                                 output_layout=output_layout,
                                                 pad_output=pad_output)

        # Random variables
        self.rng1 = ops.Uniform(range=[0.5, 1.5])
        self.rng2 = ops.Uniform(range=[0.875, 1.125])
        self.rng3 = ops.Uniform(range=[-0.5, 0.5]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:37,代碼來源:coco_pipeline.py

示例12: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size, local_rank=0, world_size=1):
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size,
                                    random_shuffle=False)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.Resize(device="gpu", resize_shorter=size, interp_type=types.INTERP_TRIANGULAR)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            crop=(crop, crop),
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:15,代碼來源:preprocess.py

示例13: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, size,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=False, fp16=False):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridValPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        # Note: initial_fill is for the shuffle buffer.  As we only want to see every example once, this is set to 1
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=shuffle, initial_fill=1)
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.crop = ops.Crop(device="cpu", crop=(crop, crop))

        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if fp16:
                output_dtype = types.FLOAT16

            self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                                output_dtype=output_dtype,
                                                output_layout=types.NCHW,
                                                crop=(crop, crop),
                                                image_type=types.RGB,
                                                mean=mean,
                                                std=std)

        self.decode = ops.ImageDecoder(device=decode_device, output_type=types.RGB)

        # Resize to desired size.  To match torchvision dataloader, use triangular interpolation
        self.res = ops.Resize(device=self.dali_device, resize_shorter=size, interp_type=types.INTERP_TRIANGULAR) 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:36,代碼來源:dali.py

示例14: __new__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __new__(
        cls,
        resize_x=None,
        resize_y=None,
        resize_shorter=None,
        resize_longer=None,
        max_size=None,
        interp_type='TRIANGULAR',
    ):
        """Create a ``Resize`` operator.

        Parameters
        ----------
        resize_x : int, optional
            The output image width.
        resize_y : int, optional
            The output image height.
        resize_shorter : int, optional
            Resize along the shorter side and limited by ``max_size``.
        resize_longer : int, optional
            Resize along the longer side.
        max_size : int, optional, default=0
            The limited size for ``resize_shorter``.
        interp_type : {'NN', 'LINEAR', 'TRIANGULAR', 'CUBIC', 'GAUSSIAN', 'LANCZOS3'}, optional
            The interpolation method.

        """
        if isinstance(interp_type, six.string_types):
            interp_type = getattr(types, 'INTERP_' + interp_type.upper())
        return ops.Resize(
            resize_x=resize_x,
            resize_y=resize_y,
            resize_shorter=resize_shorter,
            resize_longer=resize_longer,
            max_size=max_size,
            interp_type=interp_type,
            device=context.get_device_type(),
        ) 
開發者ID:seetaresearch,項目名稱:dragon,代碼行數:40,代碼來源:resize.py

示例15: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import Resize [as 別名]
def __init__(self, batch_size, num_threads, path, training, annotations, world, device_id, mean, std, resize,
                 max_size, stride, rotate_augment=False,
                 augment_brightness=0.0,
                 augment_contrast=0.0, augment_hue=0.0,
                 augment_saturation=0.0):
        super().__init__(batch_size=batch_size, num_threads=num_threads, device_id=device_id,
                         prefetch_queue_depth=num_threads, seed=42)
        self.path = path
        self.training = training
        self.stride = stride
        self.iter = 0

        self.rotate_augment = rotate_augment
        self.augment_brightness = augment_brightness
        self.augment_contrast = augment_contrast
        self.augment_hue = augment_hue
        self.augment_saturation = augment_saturation

        self.reader = ops.COCOReader(annotations_file=annotations, file_root=path, num_shards=world,
                                     shard_id=torch.cuda.current_device(),
                                     ltrb=True, ratio=True, shuffle_after_epoch=True, save_img_ids=True)

        self.decode_train = ops.ImageDecoderSlice(device="mixed", output_type=types.RGB)
        self.decode_infer = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.bbox_crop = ops.RandomBBoxCrop(device='cpu', bbox_layout="xyXY", scaling=[0.3, 1.0],
                                            thresholds=[0.1, 0.3, 0.5, 0.7, 0.9])

        self.bbox_flip = ops.BbFlip(device='cpu', ltrb=True)
        self.img_flip = ops.Flip(device='gpu')
        self.coin_flip = ops.CoinFlip(probability=0.5)
        self.bc = ops.BrightnessContrast(device='gpu')
        self.hsv = ops.Hsv(device='gpu')

        # Random number generation for augmentation
        self.brightness_dist = ops.NormalDistribution(mean=1.0, stddev=augment_brightness)
        self.contrast_dist = ops.NormalDistribution(mean=1.0, stddev=augment_contrast)
        self.hue_dist = ops.NormalDistribution(mean=0.0, stddev=augment_hue)
        self.saturation_dist = ops.NormalDistribution(mean=1.0, stddev=augment_saturation)

        if rotate_augment:
            raise RuntimeWarning("--augment-rotate current has no effect when using the DALI data loader.")

        if isinstance(resize, list): resize = max(resize)
        self.rand_resize = ops.Uniform(range=[resize, float(max_size)])

        self.resize_train = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC, save_attrs=True)
        self.resize_infer = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC,
                                       resize_longer=max_size, save_attrs=True)

        padded_size = max_size + ((self.stride - max_size % self.stride) % self.stride)

        self.pad = ops.Paste(device='gpu', fill_value=0, ratio=1.1, min_canvas_size=padded_size, paste_x=0, paste_y=0)
        self.normalize = ops.CropMirrorNormalize(device='gpu', mean=mean, std=std, crop=(padded_size, padded_size),
                                                 crop_pos_x=0, crop_pos_y=0) 
開發者ID:NVIDIA,項目名稱:retinanet-examples,代碼行數:56,代碼來源:dali.py


注:本文中的nvidia.dali.ops.Resize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。