當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.RandomResizedCrop方法代碼示例

本文整理匯總了Python中nvidia.dali.ops.RandomResizedCrop方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.RandomResizedCrop方法的具體用法?Python ops.RandomResizedCrop怎麽用?Python ops.RandomResizedCrop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nvidia.dali.ops的用法示例。


在下文中一共展示了ops.RandomResizedCrop方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.rrc = ops.RandomResizedCrop(device = "gpu", size = crop_shape)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:23,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
                 spos_pre=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop,
                                         interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.twist = ops.ColorTwist(device="gpu")
        self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:microsoft,項目名稱:nni,代碼行數:19,代碼來源:dataloader.py

示例3: imgnet_transform

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def imgnet_transform(is_training=True):
    if is_training:
        transform_list = transforms.Compose([transforms.RandomResizedCrop(224),
                                             transforms.RandomHorizontalFlip(),
                                             transforms.ColorJitter(brightness=0.5,
                                                                    contrast=0.5,
                                                                    saturation=0.3),
                                             transforms.ToTensor(),
                                             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                                                  std=[0.229, 0.224, 0.225])])
    else:
        transform_list = transforms.Compose([transforms.Resize(256),
                                             transforms.CenterCrop(224),
                                             transforms.ToTensor(),
                                             transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                                                  std=[0.229, 0.224, 0.225])])
    return transform_list 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:19,代碼來源:preprocess.py

示例4: get_imagenet_iter_torch

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def get_imagenet_iter_torch(type, image_dir, batch_size, num_threads, device_id, num_gpus, crop, val_size=256,
                            world_size=1, local_rank=0):
    if type == 'train':
        transform = transforms.Compose([
            transforms.RandomResizedCrop(crop, scale=(0.08, 1.25)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        dataset = datasets.ImageFolder(image_dir + '/train', transform)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_threads,
                                                 pin_memory=True)
    else:
        transform = transforms.Compose([
            transforms.Resize(val_size),
            transforms.CenterCrop(crop),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        ])
        dataset = datasets.ImageFolder(image_dir + '/val', transform)
        dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=num_threads,
                                                 pin_memory=True)
    return dataloader 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:25,代碼來源:preprocess.py

示例5: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, batch_size, num_threads, shard_id, image_dir, file_list, nvjpeg_padding,
                 prefetch_queue=3, seed=1, num_shards=1, channel_last=True,
                 spatial_size=(224, 224), dtype="half",
                 mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(TrainPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed, prefetch_queue_depth=prefetch_queue)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=True, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device="gpu", size=spatial_size)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:sony,項目名稱:nnabla-examples,代碼行數:24,代碼來源:data.py

示例6: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, file_list, file_root, crop_size,
                 batch_size, n_threads, device_id,
                 random_shuffle=True, seed=-1, mean=None, std=None,
                 n_samples=None):
        super(DaliPipelineTrain, self).__init__(batch_size, n_threads,
                                                device_id, seed=seed)
        crop_size = _pair(crop_size)
        if mean is None:
            mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
        if std is None:
            std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
        if n_samples is None:
            initial_fill = 4096
        else:
            initial_fill = min(4096, n_samples)
        self.loader = ops.FileReader(file_root=file_root, file_list=file_list,
                                     random_shuffle=random_shuffle,
                                     initial_fill=initial_fill)
        self.decode = ops.HostDecoder()
        self.resize = ops.Resize(device='gpu', resize_x=256, resize_y=256)
        # self.hue = ops.Hue(device="gpu")
        # self.bright = ops.Brightness(device="gpu")
        # self.cntrst = ops.Contrast(device="gpu")
        # self.rotate = ops.Rotate(device="gpu")
        # self.jitter = ops.Jitter(device="gpu")
        random_area = (crop_size[0] / 256.0) * (crop_size[1] / 256.0)
        random_area = _pair(random_area)
        random_aspect_ratio = _pair(1.0)
        self.rrcrop = ops.RandomResizedCrop(
            device='gpu', size=crop_size, random_area=random_area,
            random_aspect_ratio=random_aspect_ratio)
        self.cmnorm = ops.CropMirrorNormalize(
            device='gpu', crop=list(crop_size), mean=mean, std=std)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:chainer,項目名稱:chainer,代碼行數:36,代碼來源:dali_util.py

示例7: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False, local_rank=0, world_size=1):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        dali_device = "gpu"
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop, random_area=[0.08, 1.25])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(dali_device)) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:16,代碼來源:preprocess.py

示例8: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import RandomResizedCrop [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 min_random_area, max_random_area,
                 min_random_aspect_ratio, max_random_aspect_ratio,
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):
        super(HybridTrainPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id, 
                prefetch_queue_depth = prefetch_queue)

        if mlperf_print:
            # Shuffiling is done inside ops.MXNetReader
            mx_resnet_print(key=mlperf_log.INPUT_ORDER)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device = "gpu",
                                         random_area = [
                                             min_random_area,
                                             max_random_area],
                                         random_aspect_ratio = [
                                             min_random_aspect_ratio,
                                             max_random_aspect_ratio],
                                         size = crop_shape)

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_CROP_USES_BBOXES,
                    val=False)
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_RATIO_RANGE,
                    val=(min_random_aspect_ratio,
                         max_random_aspect_ratio))
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_AREA_RANGE,
                    val=(min_random_area,
                         max_random_area))
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RANDOM_FLIP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:62,代碼來源:dali.py


注:本文中的nvidia.dali.ops.RandomResizedCrop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。