當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.CoinFlip方法代碼示例

本文整理匯總了Python中nvidia.dali.ops.CoinFlip方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.CoinFlip方法的具體用法?Python ops.CoinFlip怎麽用?Python ops.CoinFlip使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在nvidia.dali.ops的用法示例。


在下文中一共展示了ops.CoinFlip方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape,
                 nvjpeg_padding, prefetch_queue=3,
                 output_layout=types.NCHW, pad_output=True, dtype='float16'):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id, prefetch_queue_depth = prefetch_queue)
        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)
        self.rrc = ops.RandomResizedCrop(device = "gpu", size = crop_shape)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:mlperf,項目名稱:training_results_v0.6,代碼行數:23,代碼來源:dali.py

示例2: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, seed=12, local_rank=0, world_size=1,
                 spos_pre=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=seed + device_id)
        color_space_type = types.BGR if spos_pre else types.RGB
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=color_space_type)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop,
                                         interp_type=types.INTERP_LINEAR if spos_pre else types.INTERP_TRIANGULAR)
        self.twist = ops.ColorTwist(device="gpu")
        self.jitter_rng = ops.Uniform(range=[0.6, 1.4])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=color_space_type,
                                            mean=0. if spos_pre else [0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=1. if spos_pre else [0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:microsoft,項目名稱:nni,代碼行數:19,代碼來源:dataloader.py

示例3: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, name, batch_size, num_workers, device_id, num_gpu,
                 root=os.path.expanduser('~/.mxnet/datasets/face')):
        super().__init__(batch_size, num_workers, device_id, seed=12 + device_id)

        idx_files = [os.path.join(root, name, "train.idx")]
        rec_files = [os.path.join(root, name, "train.rec")]
        prop = open(os.path.join(root, name, "property"), "r").read().strip().split(',')
        assert len(prop) == 3
        self.num_classes = int(prop[0])
        self.image_size = [int(prop[1]), int(prop[2])]

        self._input = ops.MXNetReader(path=rec_files, index_path=idx_files, random_shuffle=True,
                                      num_shards=num_gpu, tensor_init_bytes=self.image_size[0] * self.image_size[1] * 8)
        self._decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)

        self._cmnp = ops.CropMirrorNormalize(device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW,
                                             crop=self.image_size, image_type=types.RGB,
                                             mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5])
        self._contrast = ops.Contrast(device="gpu", )
        self._saturation = ops.Saturation(device="gpu", )
        self._brightness = ops.Brightness(device="gpu", )

        self._uniform = ops.Uniform(range=(0.7, 1.3))
        self._coin = ops.CoinFlip(probability=0.5)
        self.iter = 0 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:27,代碼來源:dali_utils.py

示例4: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, shard_id, image_dir, file_list, nvjpeg_padding,
                 prefetch_queue=3, seed=1, num_shards=1, channel_last=True,
                 spatial_size=(224, 224), dtype="half",
                 mean=_pixel_mean, std=_pixel_std, pad_output=True):
        super(TrainPipeline, self).__init__(
            batch_size, num_threads, shard_id, seed=seed, prefetch_queue_depth=prefetch_queue)
        self.input = ops.FileReader(file_root=image_dir, file_list=file_list,
                                    random_shuffle=True, num_shards=num_shards, shard_id=shard_id)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB,
                                       device_memory_padding=nvjpeg_padding,
                                       host_memory_padding=nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device="gpu", size=spatial_size)
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT16 if dtype == "half" else types.FLOAT,
                                            output_layout=types.NHWC if channel_last else types.NCHW,
                                            crop=spatial_size,
                                            image_type=types.RGB,
                                            mean=mean,
                                            std=std,
                                            pad_output=pad_output)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:sony,項目名稱:nnabla-examples,代碼行數:24,代碼來源:data.py

示例5: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, file_list, file_root, crop_size,
                 batch_size, n_threads, device_id,
                 random_shuffle=True, seed=-1, mean=None, std=None,
                 n_samples=None):
        super(DaliPipelineTrain, self).__init__(batch_size, n_threads,
                                                device_id, seed=seed)
        crop_size = _pair(crop_size)
        if mean is None:
            mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
        if std is None:
            std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
        if n_samples is None:
            initial_fill = 4096
        else:
            initial_fill = min(4096, n_samples)
        self.loader = ops.FileReader(file_root=file_root, file_list=file_list,
                                     random_shuffle=random_shuffle,
                                     initial_fill=initial_fill)
        self.decode = ops.HostDecoder()
        self.resize = ops.Resize(device='gpu', resize_x=256, resize_y=256)
        # self.hue = ops.Hue(device="gpu")
        # self.bright = ops.Brightness(device="gpu")
        # self.cntrst = ops.Contrast(device="gpu")
        # self.rotate = ops.Rotate(device="gpu")
        # self.jitter = ops.Jitter(device="gpu")
        random_area = (crop_size[0] / 256.0) * (crop_size[1] / 256.0)
        random_area = _pair(random_area)
        random_aspect_ratio = _pair(1.0)
        self.rrcrop = ops.RandomResizedCrop(
            device='gpu', size=crop_size, random_area=random_area,
            random_aspect_ratio=random_aspect_ratio)
        self.cmnorm = ops.CropMirrorNormalize(
            device='gpu', crop=list(crop_size), mean=mean, std=std)
        self.coin = ops.CoinFlip(probability=0.5) 
開發者ID:chainer,項目名稱:chainer,代碼行數:36,代碼來源:dali_util.py

示例6: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed = 12 + device_id)
        if torch.distributed.is_initialized():
            local_rank = torch.distributed.get_rank()
            world_size = torch.distributed.get_world_size()
        else:
            local_rank = 0
            world_size = 1

        self.input = ops.FileReader(
                file_root = data_dir,
                shard_id = local_rank,
                num_shards = world_size,
                random_shuffle = True)

        if dali_cpu:
            dali_device = "cpu"
            self.decode = ops.HostDecoderRandomCrop(device=dali_device, output_type=types.RGB,
                                                    random_aspect_ratio=[0.75, 4./3.],
                                                    random_area=[0.08, 1.0],
                                                    num_attempts=100)
        else:
            dali_device = "gpu"
            # This padding sets the size of the internal nvJPEG buffers to be able to handle all images from full-sized ImageNet
            # without additional reallocations
            self.decode = ops.nvJPEGDecoderRandomCrop(device="mixed", output_type=types.RGB, device_memory_padding=211025920, host_memory_padding=140544512,
                                                      random_aspect_ratio=[0.75, 4./3.],
                                                      random_area=[0.08, 1.0],
                                                      num_attempts=100)

        self.res = ops.Resize(device=dali_device, resize_x=crop, resize_y=crop, interp_type=types.INTERP_TRIANGULAR)
        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT,
                                            output_layout = types.NCHW,
                                            crop = (crop, crop),
                                            image_type = types.RGB,
                                            mean = [0.485 * 255,0.456 * 255,0.406 * 255],
                                            std = [0.229 * 255,0.224 * 255,0.225 * 255])
        self.coin = ops.CoinFlip(probability = 0.5) 
開發者ID:d-li14,項目名稱:HBONet,代碼行數:41,代碼來源:dataloaders.py

示例7: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, dali_cpu=False, local_rank=0, world_size=1):
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id)
        dali_device = "gpu"
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True)
        self.decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.res = ops.RandomResizedCrop(device="gpu", size=crop, random_area=[0.08, 1.25])
        self.cmnp = ops.CropMirrorNormalize(device="gpu",
                                            output_dtype=types.FLOAT,
                                            output_layout=types.NCHW,
                                            image_type=types.RGB,
                                            mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
                                            std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(dali_device)) 
開發者ID:Jzz24,項目名稱:pytorch_quantization,代碼行數:16,代碼來源:preprocess.py

示例8: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, name, batch_size, num_threads, device_id, num_shards, shard_id,
                 root=os.path.expanduser('~/.mxnet/datasets/face'), ):
        super().__init__(batch_size, num_threads, device_id, seed=12)

        idx_files = [os.path.join(root, name, "train.idx")]
        rec_files = [os.path.join(root, name, "train.rec")]
        prop = open(os.path.join(root, name, "property"), "r").read().strip().split(',')
        assert len(prop) == 3
        self.num_classes = int(prop[0])
        self.image_size = [int(prop[1]), int(prop[2])]
        self.size = 0
        for idx_file in idx_files:
            with open(idx_file, "r") as f:
                self.size += len(list(f.readlines()))

        self._input = ops.MXNetReader(path=rec_files, index_path=idx_files, random_shuffle=True,
                                      num_shards=num_shards, shard_id=shard_id, seed=12,
                                      tensor_init_bytes=self.image_size[0] * self.image_size[1] * 8)
        self._decode = ops.ImageDecoder(device="mixed", output_type=types.RGB)

        self._cmnp = ops.CropMirrorNormalize(device="gpu",
                                             output_dtype=types.FLOAT,
                                             output_layout=types.NCHW,
                                             crop=self.image_size,
                                             image_type=types.RGB,
                                             mean=[0., 0., 0.],
                                             std=[255., 255., 255.])
        self._contrast = ops.Contrast(device="gpu")
        self._saturation = ops.Saturation(device="gpu")
        self._brightness = ops.Brightness(device="gpu")

        self._uniform = ops.Uniform(range=(0.7, 1.3))
        self._coin = ops.CoinFlip(probability=0.5) 
開發者ID:THUFutureLab,項目名稱:gluon-face,代碼行數:35,代碼來源:utils.py

示例9: __new__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __new__(cls, probability=0.5):
        """Create a ``CoinFlip`` operator.

        Parameters
        ----------
        probability : float, optional, default=0.5
            The probability to return 1.

        Returns
        -------
        nvidia.dali.ops.CoinFlip
            The operator.

        """
        return ops.CoinFlip(probability=probability) 
開發者ID:seetaresearch,項目名稱:dragon,代碼行數:17,代碼來源:random.py

示例10: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, path, training, annotations, world, device_id, mean, std, resize,
                 max_size, stride, rotate_augment=False,
                 augment_brightness=0.0,
                 augment_contrast=0.0, augment_hue=0.0,
                 augment_saturation=0.0):
        super().__init__(batch_size=batch_size, num_threads=num_threads, device_id=device_id,
                         prefetch_queue_depth=num_threads, seed=42)
        self.path = path
        self.training = training
        self.stride = stride
        self.iter = 0

        self.rotate_augment = rotate_augment
        self.augment_brightness = augment_brightness
        self.augment_contrast = augment_contrast
        self.augment_hue = augment_hue
        self.augment_saturation = augment_saturation

        self.reader = ops.COCOReader(annotations_file=annotations, file_root=path, num_shards=world,
                                     shard_id=torch.cuda.current_device(),
                                     ltrb=True, ratio=True, shuffle_after_epoch=True, save_img_ids=True)

        self.decode_train = ops.ImageDecoderSlice(device="mixed", output_type=types.RGB)
        self.decode_infer = ops.ImageDecoder(device="mixed", output_type=types.RGB)
        self.bbox_crop = ops.RandomBBoxCrop(device='cpu', bbox_layout="xyXY", scaling=[0.3, 1.0],
                                            thresholds=[0.1, 0.3, 0.5, 0.7, 0.9])

        self.bbox_flip = ops.BbFlip(device='cpu', ltrb=True)
        self.img_flip = ops.Flip(device='gpu')
        self.coin_flip = ops.CoinFlip(probability=0.5)
        self.bc = ops.BrightnessContrast(device='gpu')
        self.hsv = ops.Hsv(device='gpu')

        # Random number generation for augmentation
        self.brightness_dist = ops.NormalDistribution(mean=1.0, stddev=augment_brightness)
        self.contrast_dist = ops.NormalDistribution(mean=1.0, stddev=augment_contrast)
        self.hue_dist = ops.NormalDistribution(mean=0.0, stddev=augment_hue)
        self.saturation_dist = ops.NormalDistribution(mean=1.0, stddev=augment_saturation)

        if rotate_augment:
            raise RuntimeWarning("--augment-rotate current has no effect when using the DALI data loader.")

        if isinstance(resize, list): resize = max(resize)
        self.rand_resize = ops.Uniform(range=[resize, float(max_size)])

        self.resize_train = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC, save_attrs=True)
        self.resize_infer = ops.Resize(device='gpu', interp_type=types.DALIInterpType.INTERP_CUBIC,
                                       resize_longer=max_size, save_attrs=True)

        padded_size = max_size + ((self.stride - max_size % self.stride) % self.stride)

        self.pad = ops.Paste(device='gpu', fill_value=0, ratio=1.1, min_canvas_size=padded_size, paste_x=0, paste_y=0)
        self.normalize = ops.CropMirrorNormalize(device='gpu', mean=mean, std=std, crop=(padded_size, padded_size),
                                                 crop_pos_x=0, crop_pos_y=0) 
開發者ID:NVIDIA,項目名稱:retinanet-examples,代碼行數:56,代碼來源:dali.py

示例11: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, rec_path, idx_path,
                 shard_id, num_shards, crop_shape, 
                 min_random_area, max_random_area,
                 min_random_aspect_ratio, max_random_aspect_ratio,
                 nvjpeg_padding, prefetch_queue=3,
                 seed=12,
                 output_layout=types.NCHW, pad_output=True, dtype='float16',
                 mlperf_print=True):
        super(HybridTrainPipe, self).__init__(
                batch_size, num_threads, device_id, 
                seed = seed + device_id, 
                prefetch_queue_depth = prefetch_queue)

        if mlperf_print:
            # Shuffiling is done inside ops.MXNetReader
            mx_resnet_print(key=mlperf_log.INPUT_ORDER)

        self.input = ops.MXNetReader(path = [rec_path], index_path=[idx_path],
                                     random_shuffle=True, shard_id=shard_id, num_shards=num_shards)

        self.decode = ops.nvJPEGDecoder(device = "mixed", output_type = types.RGB,
                                        device_memory_padding = nvjpeg_padding,
                                        host_memory_padding = nvjpeg_padding)

        self.rrc = ops.RandomResizedCrop(device = "gpu",
                                         random_area = [
                                             min_random_area,
                                             max_random_area],
                                         random_aspect_ratio = [
                                             min_random_aspect_ratio,
                                             max_random_aspect_ratio],
                                         size = crop_shape)

        self.cmnp = ops.CropMirrorNormalize(device = "gpu",
                                            output_dtype = types.FLOAT16 if dtype == 'float16' else types.FLOAT,
                                            output_layout = output_layout,
                                            crop = crop_shape,
                                            pad_output = pad_output,
                                            image_type = types.RGB,
                                            mean = _mean_pixel,
                                            std =  _std_pixel)
        self.coin = ops.CoinFlip(probability = 0.5)

        if mlperf_print:
            mx_resnet_print(
                    key=mlperf_log.INPUT_CROP_USES_BBOXES,
                    val=False)
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_RATIO_RANGE,
                    val=(min_random_aspect_ratio,
                         max_random_aspect_ratio))
            mx_resnet_print(
                    key=mlperf_log.INPUT_DISTORTED_CROP_AREA_RANGE,
                    val=(min_random_area,
                         max_random_area))
            mx_resnet_print(
                    key=mlperf_log.INPUT_MEAN_SUBTRACTION,
                    val=_mean_pixel)
            mx_resnet_print(
                    key=mlperf_log.INPUT_RANDOM_FLIP) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:62,代碼來源:dali.py

示例12: __init__

# 需要導入模塊: from nvidia.dali import ops [as 別名]
# 或者: from nvidia.dali.ops import CoinFlip [as 別名]
def __init__(self, batch_size, num_threads, device_id, data_dir, crop,
                 mean, std, local_rank=0, world_size=1, dali_cpu=False, shuffle=True, fp16=False,
                 min_crop_size=0.08):

        # As we're recreating the Pipeline at every epoch, the seed must be -1 (random seed)
        super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=-1)

        # Enabling read_ahead slowed down processing ~40%
        self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size,
                                    random_shuffle=shuffle)

        # Let user decide which pipeline works best with the chosen model
        if dali_cpu:
            decode_device = "cpu"
            self.dali_device = "cpu"
            self.flip = ops.Flip(device=self.dali_device)
        else:
            decode_device = "mixed"
            self.dali_device = "gpu"

            output_dtype = types.FLOAT
            if self.dali_device == "gpu" and fp16:
                output_dtype = types.FLOAT16

            self.cmn = ops.CropMirrorNormalize(device="gpu",
                                               output_dtype=output_dtype,
                                               output_layout=types.NCHW,
                                               crop=(crop, crop),
                                               image_type=types.RGB,
                                               mean=mean,
                                               std=std,)

        # To be able to handle all images from full-sized ImageNet, this padding sets the size of the internal
        # nvJPEG buffers without additional reallocations
        device_memory_padding = 211025920 if decode_device == 'mixed' else 0
        host_memory_padding = 140544512 if decode_device == 'mixed' else 0
        self.decode = ops.ImageDecoderRandomCrop(device=decode_device, output_type=types.RGB,
                                                 device_memory_padding=device_memory_padding,
                                                 host_memory_padding=host_memory_padding,
                                                 random_aspect_ratio=[0.8, 1.25],
                                                 random_area=[min_crop_size, 1.0],
                                                 num_attempts=100)

        # Resize as desired.  To match torchvision data loader, use triangular interpolation.
        self.res = ops.Resize(device=self.dali_device, resize_x=crop, resize_y=crop,
                              interp_type=types.INTERP_TRIANGULAR)

        self.coin = ops.CoinFlip(probability=0.5)
        print('DALI "{0}" variant'.format(self.dali_device)) 
開發者ID:yaysummeriscoming,項目名稱:DALI_pytorch_demo,代碼行數:51,代碼來源:dali.py


注:本文中的nvidia.dali.ops.CoinFlip方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。