當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.zeros方法代碼示例

本文整理匯總了Python中numpy.zeros方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.zeros方法的具體用法?Python numpy.zeros怎麽用?Python numpy.zeros使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.zeros方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: wordbag2mat

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def wordbag2mat(self, wordbag): #testing
        if self.model==None:
            raise Exception("no model")
        matrix=np.empty((len(wordbag),self.len_vector))
        #如果詞典中不存在該詞,拋出異常,但暫時還沒有自定義詞典的辦法,所以暫時不那麽嚴格
        #try:
        #    for i in range(len(wordbag)):
        #        matrix[i,:]=self.model[wordbag[i]]
        #except:
        #    raise Exception("'%s' can not be found in dictionary." % wordbag[i])
        #如果詞典中不存在該詞,則push進一列零向量
        for i in range(len(wordbag)):
            try:
                matrix[i,:]=self.model.wv.__getitem__(wordbag[i])#[wordbag[i]]
            except:
                matrix[i,:]=np.zeros((1,self.len_vector))
        return matrix
################################ problem ##################################### 
開發者ID:Coldog2333,項目名稱:Financial-NLP,代碼行數:20,代碼來源:NLP.py

示例2: similarity_label

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def similarity_label(self, words, normalization=True):
        """
        you can calculate more than one word at the same time.
        """
        if self.model==None:
            raise Exception('no model.')
        if isinstance(words, string_types):
            words=[words]
        vectors=np.transpose(self.model.wv.__getitem__(words))
        if normalization:
            unit_vector=unitvec(vectors,ax=0) # 這樣寫比原來那樣速度提升一倍
            #unit_vector=np.zeros((len(vectors),len(words)))
            #for i in range(len(words)):
            #    unit_vector[:,i]=matutils.unitvec(vectors[:,i])
            dists=np.dot(self.Label_vec_u, unit_vector)
        else:
            dists=np.dot(self.Label_vec, vectors)
        return dists 
開發者ID:Coldog2333,項目名稱:Financial-NLP,代碼行數:20,代碼來源:NLP.py

示例3: get_a_datum

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def get_a_datum(self):
        if self._compressed:
            datum = extract_sample(
                self._data[self._cur], self._mean, self._resize)
        else:
            datum = self._data[self._cur]
        # start parsing labels
        label_elems = parse_label(self._label[self._cur])
        label = np.zeros(self._label_dim)
        if not self._multilabel:
            label[0] = label_elems[0]
        else:
            for i in label_elems:
                label[i] = 1
        self._cur = (self._cur + 1) % self._sample_count
        return datum, label 
開發者ID:liuxianming,項目名稱:Caffe-Python-Data-Layer,代碼行數:18,代碼來源:MultiLabelLayer.py

示例4: load_keypoints

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def load_keypoints(image_filepath, image_height, image_width):
    """Load facial keypoints of one image."""
    fp_keypoints = "%s.cat" % (image_filepath,)
    if not os.path.isfile(fp_keypoints):
        raise Exception("Could not find keypoint coordinates for image '%s'." \
                        % (image_filepath,))
    else:
        coords_raw = open(fp_keypoints, "r").readlines()[0].strip().split(" ")
        coords_raw = [abs(int(coord)) for coord in coords_raw]
        keypoints = []
        #keypoints_arr = np.zeros((9*2,), dtype=np.int32)
        for i in range(1, len(coords_raw), 2): # first element is the number of coords
            x = np.clip(coords_raw[i], 0, image_width-1)
            y = np.clip(coords_raw[i+1], 0, image_height-1)
            keypoints.append((x, y))

        return keypoints 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:19,代碼來源:create_dataset.py

示例5: wer

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def wer(self, r, h):
        # initialisation
        d = np.zeros((len(r)+1)*(len(h)+1), dtype=np.uint8)
        d = d.reshape((len(r)+1, len(h)+1))
        for i in range(len(r)+1):
            for j in range(len(h)+1):
                if i == 0:
                    d[0][j] = j
                elif j == 0:
                    d[i][0] = i

        # computation
        for i in range(1, len(r)+1):
            for j in range(1, len(h)+1):
                if r[i-1] == h[j-1]:
                    d[i][j] = d[i-1][j-1]
                else:
                    substitution = d[i-1][j-1] + 1
                    insertion    = d[i][j-1] + 1
                    deletion     = d[i-1][j] + 1
                    d[i][j] = min(substitution, insertion, deletion)

        return d[len(r)][len(h)] 
開發者ID:sailordiary,項目名稱:LipNet-PyTorch,代碼行數:25,代碼來源:ctc_decoder.py

示例6: compliance_function_fdiff

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def compliance_function_fdiff(self, x, dc):
        obj = self.compliance_function(x, dc)

        x0 = x.copy()
        dc0 = dc.copy()
        dcf = np.zeros(dc.shape)
        for i, v in enumerate(x):
            x = x0.copy()
            x[i] += 1e-6
            o1 = self.compliance_function(x, dc)
            x[i] = x0[i] - 1e-6
            o2 = self.compliance_function(x, dc)
            dcf[i] = (o1 - o2) / (2e-6)
        print("finite differences: {:g}".format(np.linalg.norm(dcf - dc0)))
        dc[:] = dc0

        return obj 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:19,代碼來源:solver.py

示例7: calculate_fdiff_stress

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def calculate_fdiff_stress(self, x, u, nu, side=1, dx=1e-6):
        """
        Calculate the derivative of the Von Mises stress using finite
        differences given the densities x, displacements u, and young modulus
        nu. Optionally, provide the side length (default: 1) and delta x
        (default: 1e-6).
        """
        ds = self.calculate_diff_stress(x, u, nu, side)
        dsf = numpy.zeros(x.shape)
        x = numpy.expand_dims(x, -1)
        for i in range(x.shape[0]):
            delta = scipy.sparse.coo_matrix(([dx], [[i], [0]]), shape=x.shape)
            s1 = self.calculate_stress((x + delta.A).squeeze(), u, nu, side)
            s2 = self.calculate_stress((x - delta.A).squeeze(), u, nu, side)
            dsf[i] = ((s1 - s2) / (2. * dx))[i]
        print("finite differences: {:g}".format(numpy.linalg.norm(dsf - ds)))
        return dsf 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:19,代碼來源:von_mises_stress.py

示例8: test_add_uniform_time_weights

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def test_add_uniform_time_weights():
    time = np.array([15, 46, 74])
    data = np.zeros((3))
    ds = xr.DataArray(data,
                      coords=[time],
                      dims=[TIME_STR],
                      name='a').to_dataset()
    units_str = 'days since 2000-01-01 00:00:00'
    cal_str = 'noleap'
    ds[TIME_STR].attrs['units'] = units_str
    ds[TIME_STR].attrs['calendar'] = cal_str

    with pytest.raises(KeyError):
        ds[TIME_WEIGHTS_STR]

    ds = add_uniform_time_weights(ds)
    time_weights_expected = xr.DataArray(
        [1, 1, 1], coords=ds[TIME_STR].coords, name=TIME_WEIGHTS_STR)
    time_weights_expected.attrs['units'] = 'days'
    assert ds[TIME_WEIGHTS_STR].identical(time_weights_expected) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:22,代碼來源:test_utils_times.py

示例9: ds_time_encoded_cf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def ds_time_encoded_cf():
    time_bounds = np.array([[0, 31], [31, 59], [59, 90]])
    bounds = np.array([0, 1])
    time = np.array([15, 46, 74])
    data = np.zeros((3))
    ds = xr.DataArray(data,
                      coords=[time],
                      dims=[TIME_STR],
                      name='a').to_dataset()
    ds[TIME_BOUNDS_STR] = xr.DataArray(time_bounds,
                                       coords=[time, bounds],
                                       dims=[TIME_STR, BOUNDS_STR],
                                       name=TIME_BOUNDS_STR)
    units_str = 'days since 2000-01-01 00:00:00'
    cal_str = 'noleap'
    ds[TIME_STR].attrs['units'] = units_str
    ds[TIME_STR].attrs['calendar'] = cal_str
    return ds 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:20,代碼來源:conftest.py

示例10: ds_with_time_bounds

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def ds_with_time_bounds(alt_lat_str, var_name):
    time_bounds = np.array([[0, 31], [31, 59], [59, 90]])
    bounds = np.array([0, 1])
    time = np.array([15, 46, 74])
    data = np.zeros((3, 1, 1))
    lat = [0]
    lon = [0]
    ds = xr.DataArray(data,
                      coords=[time, lat, lon],
                      dims=[TIME_STR, alt_lat_str, LON_STR],
                      name=var_name).to_dataset()
    ds[TIME_BOUNDS_STR] = xr.DataArray(time_bounds,
                                       coords=[time, bounds],
                                       dims=[TIME_STR, BOUNDS_STR],
                                       name=TIME_BOUNDS_STR)
    units_str = 'days since 2000-01-01 00:00:00'
    ds[TIME_STR].attrs['units'] = units_str
    ds[TIME_BOUNDS_STR].attrs['units'] = units_str
    return ds 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:21,代碼來源:test_data_loader.py

示例11: test_sel_var

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def test_sel_var():
    time = np.array([0, 31, 59]) + 15
    data = np.zeros((3))
    ds = xr.DataArray(data,
                      coords=[time],
                      dims=[TIME_STR],
                      name=convection_rain.name).to_dataset()
    condensation_rain_alt_name, = condensation_rain.alt_names
    ds[condensation_rain_alt_name] = xr.DataArray(data, coords=[ds.time])
    result = _sel_var(ds, convection_rain)
    assert result.name == convection_rain.name

    result = _sel_var(ds, condensation_rain)
    assert result.name == condensation_rain.name

    with pytest.raises(LookupError):
        _sel_var(ds, precip) 
開發者ID:spencerahill,項目名稱:aospy,代碼行數:19,代碼來源:test_data_loader.py

示例12: build

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def build(self):
#{{{
        import numpy as np;
        self.W = shared((self.input_dim, 4 * self.output_dim),
                               name='{}_W'.format(self.name))
        self.U = shared((self.output_dim, 4 * self.output_dim),
                                     name='{}_U'.format(self.name))

        self.b = K.variable(np.hstack((np.zeros(self.output_dim),
                                        K.get_value(self.forget_bias_init(
                                                (self.output_dim,))),
                                        np.zeros(self.output_dim),
                                        np.zeros(self.output_dim))),
                                name='{}_b'.format(self.name))
        #self.c_0 = shared((self.output_dim,), name='{}_c_0'.format(self.name)  )
        #self.h_0 = shared((self.output_dim,), name='{}_h_0'.format(self.name)  )
        self.c_0=np.zeros(self.output_dim).astype(theano.config.floatX);
        self.h_0=np.zeros(self.output_dim).astype(theano.config.floatX);
        self.params=[self.W,self.U,
                        self.b,
                    # self.c_0,self.h_0
                    ];
        #}}} 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:25,代碼來源:nn.py

示例13: ctc_update_log_p

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev):
    active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()]
    active_next = T.cast(T.minimum(
        T.maximum(
            active + 1,
            T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1
        ), log_p_curr.shape[0]), 'int32')

    common_factor = T.max(log_p_prev[:active])
    p_prev = T.exp(log_p_prev[:active] - common_factor)
    _p_prev = zeros[:active_next]
    # copy over
    _p_prev = T.set_subtensor(_p_prev[:active], p_prev)
    # previous transitions
    _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1])
    # skip transitions
    _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs])
    updated_log_p_prev = T.log(_p_prev) + common_factor

    log_p_next = T.set_subtensor(
        zeros[:active_next],
        log_p_curr[:active_next] + updated_log_p_prev
    )
    return active_next, log_p_next 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:26,代碼來源:theano_backend.py

示例14: ctc_path_probs

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def ctc_path_probs(predict, Y, alpha=1e-4):
    smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0]
    L = T.log(smoothed_predict)
    zeros = T.zeros_like(L[0])
    log_first = zeros

    f_skip_idxs = ctc_create_skip_idxs(Y)
    b_skip_idxs = ctc_create_skip_idxs(Y[::-1])  # there should be a shortcut to calculating this

    def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev):
        f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev)
        b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev)
        return f_active_next, log_f_next, b_active_next, log_b_next

    [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan(
        step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first])

    idxs = T.arange(L.shape[1]).dimshuffle('x', 0)
    mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1]
    log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L
    return log_probs, mask 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:23,代碼來源:theano_backend.py

示例15: _project_im_rois

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import zeros [as 別名]
def _project_im_rois(im_rois, scales):
    """Project image RoIs into the image pyramid built by _get_image_blob.
    Arguments:
        im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates
        scales (list): scale factors as returned by _get_image_blob
    Returns:
        rois (ndarray): R x 4 matrix of projected RoI coordinates
        levels (list): image pyramid levels used by each projected RoI
    """
    im_rois = im_rois.astype(np.float, copy=False)

    if len(scales) > 1:
        widths = im_rois[:, 2] - im_rois[:, 0] + 1
        heights = im_rois[:, 3] - im_rois[:, 1] + 1
        areas = widths * heights
        scaled_areas = areas[:, np.newaxis] * (scales[np.newaxis, :] ** 2)
        diff_areas = np.abs(scaled_areas - 224 * 224)
        levels = diff_areas.argmin(axis=1)[:, np.newaxis]
    else:
        levels = np.zeros((im_rois.shape[0], 1), dtype=np.int)

    rois = im_rois * scales[levels]

    return rois, levels 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:26,代碼來源:test.py


注:本文中的numpy.zeros方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。