當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.where方法代碼示例

本文整理匯總了Python中numpy.where方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.where方法的具體用法?Python numpy.where怎麽用?Python numpy.where使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.where方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: show

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def show(mnist, targets, ret):
    target_ids = range(len(set(targets)))
    
    colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k', 'violet', 'orange', 'purple']
    
    plt.figure(figsize=(12, 10))
    
    ax = plt.subplot(aspect='equal')
    for label in set(targets):
        idx = np.where(np.array(targets) == label)[0]
        plt.scatter(ret[idx, 0], ret[idx, 1], c=colors[label], label=label)
    
    for i in range(0, len(targets), 250):
        img = (mnist[i][0] * 0.3081 + 0.1307).numpy()[0]
        img = OffsetImage(img, cmap=plt.cm.gray_r, zoom=0.5) 
        ax.add_artist(AnnotationBbox(img, ret[i]))
    
    plt.legend()
    plt.show() 
開發者ID:peisuke,項目名稱:MomentumContrast.pytorch,代碼行數:21,代碼來源:test.py

示例2: filter_roidb

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def filter_roidb(roidb):
  """Remove roidb entries that have no usable RoIs."""

  def is_valid(entry):
    # Valid images have:
    #   (1) At least one foreground RoI OR
    #   (2) At least one background RoI
    overlaps = entry['max_overlaps']
    # find boxes with sufficient overlap
    fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0]
    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)
    bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) &
                       (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0]
    # image is only valid if such boxes exist
    valid = len(fg_inds) > 0 or len(bg_inds) > 0
    return valid

  num = len(roidb)
  filtered_roidb = [entry for entry in roidb if is_valid(entry)]
  num_after = len(filtered_roidb)
  print('Filtered {} roidb entries: {} -> {}'.format(num - num_after,
                                                     num, num_after))
  return filtered_roidb 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:25,代碼來源:train_val.py

示例3: _evaluation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def _evaluation(self, pop, eval_flag):
        # create network list
        net_lists = []
        active_index = np.where(eval_flag)[0]
        for i in active_index:
            net_lists.append(pop[i].active_net_list())

        # evaluation
        fp = self.eval_func(net_lists)
        for i, j in enumerate(active_index):
            pop[j].eval = fp[i]
        evaluations = np.zeros(len(pop))
        for i in range(len(pop)):
            evaluations[i] = pop[i].eval

        self.num_eval += len(net_lists)
        return evaluations 
開發者ID:sg-nm,項目名稱:cgp-cnn,代碼行數:19,代碼來源:cgp.py

示例4: __iter__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def __iter__(self):
        indices = []
        for i, size in enumerate(self.group_sizes):
            if size == 0:
                continue
            indice = np.where(self.flag == i)[0]
            assert len(indice) == size
            np.random.shuffle(indice)
            num_extra = int(np.ceil(size / self.samples_per_gpu)
                            ) * self.samples_per_gpu - len(indice)
            indice = np.concatenate(
                [indice, np.random.choice(indice, num_extra)])
            indices.append(indice)
        indices = np.concatenate(indices)
        indices = [
            indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu]
            for i in np.random.permutation(
                range(len(indices) // self.samples_per_gpu))
        ]
        indices = np.concatenate(indices)
        indices = indices.astype(np.int64).tolist()
        assert len(indices) == self.num_samples
        return iter(indices) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:25,代碼來源:group_sampler.py

示例5: _lsa_events_converter

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def _lsa_events_converter(events_file):
    """Make a model where each trial has its own regressor using least squares
    all (LSA)

    Parameters
    ----------
    events_file : str
        File that contains all events from the bold run

    Yields
    ------
    events : DataFrame
        A DataFrame in which each trial has its own trial_type
    """

    import pandas as pd
    events = pd.read_csv(events_file, sep='\t')
    events['original_trial_type'] = events['trial_type']
    for cond, cond_df in events.groupby('trial_type'):
        cond_idx = cond_df.index
        for i_trial, trial_idx in enumerate(cond_idx):
            trial_name = '{0}_{1:04d}'.format(cond, i_trial+1)
            events.loc[trial_idx, 'trial_type'] = trial_name
    return events 
開發者ID:HBClab,項目名稱:NiBetaSeries,代碼行數:26,代碼來源:nistats.py

示例6: to_cortex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def to_cortex(c):
    '''
    to_cortex(c) yields a Cortex object if the argument c can be coerced to one and otherwise raises
      an error.

    An object can be coerced to a Cortex object if:
      * it is a cortex object
      * it is a tuple (subject, h) where subject is a subject object and h is a subject hemisphere.
    '''
    if is_cortex(c): return c
    elif pimms.is_vector(c) and len(c) == 2:
        (s,h) = c
        if is_subject(s) and pimms.is_str(h):
            if h in s.hemis: return s.hemis[h]
            else: raise ValueError('to_cortex: hemi %s not found in given subject' % h)
    raise ValueError('Could not coerce argument to Cortex object')

####################################################################################################
# These functions deal with cortex_to_image and image_to_cortex interpolation: 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:21,代碼來源:core.py

示例7: to_potential

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def to_potential(f):
    '''
    to_potential(f) yields f if f is a potential function; if f is not, but f can be converted to
      a potential function, that conversion is performed then the result is yielded.
    to_potential(Ellipsis) yields a potential function whose output is simply its input (i.e., the
      identity function).
    to_potential(None) is equivalent to to_potential(0).

    The following can be converted into potential functions:
      * Anything for which pimms.is_array(x, 'number') yields True (i.e., arrays of constants).
      * Any tuple (g, h) where g(x) yields a potential value and h(x) yields a jacobian matrix for
        the parameter vector x.
    '''
    if   is_potential(f): return f
    elif f is Ellipsis:   return identity
    elif pimms.is_array(f, 'number'): return const_potential(f)
    elif isinstance(f, tuple) and len(f) == 2: return PotentialLambda(f[0], f[1])
    else: raise ValueError('Could not convert object of type %s to potential function' % type(f)) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:core.py

示例8: jacobian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def jacobian(self, params, into=None):
        params = flattest(params)
        n = len(params)
        ii = np.arange(n)
        (rs,cs,zs) = ([],[],[])
        for ((mn,mx), f) in self.pieces_with_default:
            if len(ii) == 0: break
            k = np.where((params >= mn) & (params <= mx))[0]
            if len(k) == 0: continue
            kk = ii[k]
            j = f.jacobian(params[k])
            if j.shape[0] == 1 and j.shape[1] > 1: j = repmat(j, j.shape[1], 1)
            (rj,cj,vj) = sps.find(j)
            rs.append(kk[rj])
            cs.append(kk[cj])
            zs.append(vj)
            ii = np.delete(ii, k)
            params = np.delete(params, k)
        (rs,cs,zs) = [np.concatenate(us) if len(us) > 0 else [] for us in (rs,cs,zs)]
        dz = sps.csr_matrix((zs, (rs,cs)), shape=(n,n))
        return safe_into(into, dz) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:core.py

示例9: signed_face_areas

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def signed_face_areas(faces, axis=1):
    '''
    signed_face_areas(faces) yields a potential function f(x) that calculates the signed area of
      each face represented by the simplices matrix faces.

    If faces is None, then the parameters must arrive in the form of a flattened (n x 3 x 2) matrix
    where n is the number of triangles. Otherwise, the faces matrix must be either (n x 3) or (n x 3
    x s); if the former, each row must list the vertex indices for the faces where the vertex matrix
    is presumed to be shaped (V x 2). Alternately, faces may be a full (n x 3 x 2) simplex array of
    the indices into the parameters.

    The optional argument axis (default: 1) may be set to 0 if the faces argument is a matrix but
    the coordinate matrix will be (2 x V) instead of (V x 2).
    '''
    faces = np.asarray(faces)
    if len(faces.shape) == 2:
        if faces.shape[1] != 3: faces = faces.T
        n = 2 * (np.max(faces) + 1)
        if axis == 0: tmp = np.reshape(np.arange(n), (2,-1)).T
        else:         tmp = np.reshape(np.arange(n), (-1,2))
        faces = np.reshape(tmp[faces.flat], (-1,3,2))
    faces = faces.flatten()
    return compose(TriangleSignedArea2DPotential(), part(Ellipsis, faces)) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例10: face_areas

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def face_areas(faces, axis=1):
    '''
    face_areas(faces) yields a potential function f(x) that calculates the unsigned area of each
      faces represented by the simplices matrix faces.

    If faces is None, then the parameters must arrive in the form of a flattened (n x 3 x 2) matrix
    where n is the number of triangles. Otherwise, the faces matrix must be either (n x 3) or (n x 3
    x s); if the former, each row must list the vertex indices for the faces where the vertex matrix
    is presumed to be shaped (V x 2). Alternately, faces may be a full (n x 3 x 2) simplex array of
    the indices into the parameters.

    The optional argument axis (default: 1) may be set to 0 if the faces argument is a matrix but
    the coordinate matrix will be (2 x V) instead of (V x 2).
    '''
    faces = np.asarray(faces)
    if len(faces.shape) == 2:
        if faces.shape[1] != 3: faces = faces.T
        n = 2 * (np.max(faces) + 1)
        if axis == 0: tmp = np.reshape(np.arange(n), (2,-1)).T
        else:         tmp = np.reshape(np.arange(n), (-1,2))
        faces = np.reshape(tmp[faces.flat], (-1,3,2))
    faces = faces.flatten()
    return compose(TriangleArea2DPotential(), part(Ellipsis, faces)) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例11: dataframe_select

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def dataframe_select(df, *cols, **filters):
    '''
    dataframe_select(df, k1=v1, k2=v2...) yields df after selecting all the columns in which the
      given keys (k1, k2, etc.) have been selected such that the associated columns in the dataframe
      contain only the rows whose cells match the given values.
    dataframe_select(df, col1, col2...) selects the given columns.
    dataframe_select(df, col1, col2..., k1=v1, k2=v2...) selects both.
    
    If a value is a tuple/list of 2 elements, then it is considered a range where cells must fall
    between the values. If value is a tuple/list of more than 2 elements or is a set of any length
    then it is a list of values, any one of which can match the cell.
    '''
    ii = np.ones(len(df), dtype='bool')
    for (k,v) in six.iteritems(filters):
        vals = df[k].values
        if   pimms.is_set(v):                    jj = np.isin(vals, list(v))
        elif pimms.is_vector(v) and len(v) == 2: jj = (v[0] <= vals) & (vals < v[1])
        elif pimms.is_vector(v):                 jj = np.isin(vals, list(v))
        else:                                    jj = (vals == v)
        ii = np.logical_and(ii, jj)
    if len(ii) != np.sum(ii): df = df.loc[ii]
    if len(cols) > 0: df = df[list(cols)]
    return df 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:25,代碼來源:core.py

示例12: arccosine

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def arccosine(x, null=(-np.inf, np.inf)):
    '''
    arccosine(x) is equivalent to acos(x) except that it also works on sparse arrays.

    The optional argument null (default, (-numpy.inf, numpy.inf)) may be specified to indicate what
    value(s) should be assigned when x < -1 or x > 1. If only one number is given, then it is used
    for both values; otherwise the first value corresponds to <-1 and the second to >1.  If null is
    None, then an error is raised when invalid values are encountered.
    '''
    if sps.issparse(x): x = x.toarray()
    else:               x = np.asarray(x)
    try:    (nln,nlp) = null
    except Exception: (nln,nlp) = (null,null)
    ii = None if nln is None else np.where(x < -1)
    jj = None if nlp is None else np.where(x > 1)
    if ii: x[ii] = 0
    if jj: x[jj] = 0
    x = np.arccos(x)
    if ii: x[ii] = nln
    if jj: x[jj] = nlp
    return x 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:23,代碼來源:core.py

示例13: splrep

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def splrep(coordinates, t, order, weights, smoothing, periodic):
        from scipy import interpolate
        (x,y) = coordinates
        # we need to skip anything where t[i] and t[i+1] are too close
        wh = np.where(np.isclose(np.diff(t), 0))[0]
        if len(wh) > 0:
            (t,x,y) = [np.array(u) for u in (t,x,y)]
            ii = np.arange(len(t))
            for i in reversed(wh):
                ii[i+1:-1] = ii[i+2:]
                for u in (t,x,y):
                    u[i] = np.mean(u[i:i+2])
            ii = ii[:-len(wh)]
            (t,x,y) = [u[ii] for u in (t,x,y)]
        xtck = interpolate.splrep(t, x, k=order, s=smoothing, w=weights, per=periodic)
        ytck = interpolate.splrep(t, y, k=order, s=smoothing, w=weights, per=periodic)
        return tuple([tuple([pimms.imm_array(u) for u in tck])
                      for tck in (xtck,ytck)]) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:core.py

示例14: collect

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def collect(self, index, dataDict, check=True):
        """
        Collect atom given its index.

        :Parameters:
            #. index (int): The atom index to collect.
            #. dataDict (dict): The atom data dict to collect.
            #. check (boolean):  Whether to check dataDict keys before
               collecting. If set to False, user promises that collected
               data is a dictionary and contains the needed keys.
        """
        assert not self.is_collected(index), LOGGER.error("attempting to collect and already collected atom of index '%i'"%index)
        # add data
        if check:
            assert isinstance(dataDict, dict), LOGGER.error("dataDict must be a dictionary of data where keys are dataKeys")
            assert tuple(sorted(dataDict)) == self.__dataKeys, LOGGER.error("dataDict keys don't match promised dataKeys")
        self.__collectedData[index] = dataDict
        # set indexes sorted array
        idx = np.searchsorted(a=self.__indexesSortedArray, v=index, side='left')
        self.__indexesSortedArray = np.insert(self.__indexesSortedArray, idx, index)
        # set state
        self.__state = str(uuid.uuid1()) 
開發者ID:bachiraoun,項目名稱:fullrmc,代碼行數:24,代碼來源:Collection.py

示例15: __on_scan_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import where [as 別名]
def __on_scan_data(self, event):
        levels = numpy.log10(event['l'])
        levels *= 10

        noise = numpy.percentile(levels,
                                 self._dynP)

        for monitor in self._monitors:
            freq = monitor.get_frequency()
            if monitor.get_enabled():
                monitor.set_noise(noise)
                index = numpy.where(freq == event['f'])[0]
                signal = monitor.set_level(levels[index][0],
                                           event['timestamp'],
                                           self._location)

                if signal is not None:
                    signals = 'Signals: {}\r'.format(self.__count_signals() -
                                                     self._signalCount)
                    self.__std_out(signals, False)
                    if signal.end is not None:
                        recording = format_recording(freq, signal)
                        if self._pushUri is not None:
                            self._push.send(self._pushUri,
                                            recording)
                        if self._server is not None:
                            self._server.send(recording)
                        if self._json:
                            sys.stdout.write(recording + '\n') 
開發者ID:EarToEarOak,項目名稱:RF-Monitor,代碼行數:31,代碼來源:cli.py


注:本文中的numpy.where方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。