當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.void方法代碼示例

本文整理匯總了Python中numpy.void方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.void方法的具體用法?Python numpy.void怎麽用?Python numpy.void使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.void方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_datatype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_datatype(self):
        ehdr = self.header_class()
        codes = self.header_class._data_type_codes
        for code in codes.value_set():
            npt = codes.type[code]
            if npt is np.void:
                assert_raises(
                       HeaderDataError,
                       ehdr.set_data_dtype,
                       code)
                continue
            dt = codes.dtype[code]
            ehdr.set_data_dtype(npt)
            assert_true(ehdr['datatype'] == code)
            assert_true(ehdr['bitpix'] == dt.itemsize*8)
            ehdr.set_data_dtype(code)
            assert_true(ehdr['datatype'] == code)
            ehdr.set_data_dtype(dt)
            assert_true(ehdr['datatype'] == code) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:21,代碼來源:test_analyze.py

示例2: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def __init__(self, array, ptr=None):
        self._arr = array

        if ctypes:
            self._ctypes = ctypes
            # get a void pointer to the buffer, which keeps the array alive
            self._data = _get_void_ptr(array)
            assert self._data.value == ptr
        else:
            # fake a pointer-like object that holds onto the reference
            self._ctypes = _missing_ctypes()
            self._data = self._ctypes.c_void_p(ptr)
            self._data._objects = array

        if self._arr.ndim == 0:
            self._zerod = True
        else:
            self._zerod = False 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:20,代碼來源:_internal.py

示例3: _name_get

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def _name_get(dtype):
    # provides dtype.name.__get__

    if dtype.isbuiltin == 2:
        # user dtypes don't promise to do anything special
        return dtype.type.__name__

    # Builtin classes are documented as returning a "bit name"
    name = dtype.type.__name__

    # handle bool_, str_, etc
    if name[-1] == '_':
        name = name[:-1]

    # append bit counts to str, unicode, and void
    if np.issubdtype(dtype, np.flexible) and not _isunsized(dtype):
        name += "{}".format(dtype.itemsize * 8)

    # append metadata to datetimes
    elif dtype.type in (np.datetime64, np.timedelta64):
        name += _datetime_metadata_str(dtype)

    return name 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:_dtype.py

示例4: test_void_scalar_structured_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_void_scalar_structured_data(self):
        dt = np.dtype([('name', np.unicode_, 16), ('grades', np.float64, (2,))])
        x = np.array(('ndarray_scalar', (1.2, 3.0)), dtype=dt)[()]
        assert_(isinstance(x, np.void))
        mv_x = memoryview(x)
        expected_size = 16 * np.dtype((np.unicode_, 1)).itemsize
        expected_size += 2 * np.dtype((np.float64, 1)).itemsize
        assert_equal(mv_x.itemsize, expected_size)
        assert_equal(mv_x.ndim, 0)
        assert_equal(mv_x.shape, ())
        assert_equal(mv_x.strides, ())
        assert_equal(mv_x.suboffsets, ())

        # check scalar format string against ndarray format string
        a = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
        assert_(isinstance(a, np.ndarray))
        mv_a = memoryview(a)
        assert_equal(mv_x.itemsize, mv_a.itemsize)
        assert_equal(mv_x.format, mv_a.format) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_scalarbuffer.py

示例5: test_void_scalar_constructor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_void_scalar_constructor(self):
        #Issue #1550

        #Create test string data, construct void scalar from data and assert
        #that void scalar contains original data.
        test_string = np.array("test")
        test_string_void_scalar = np.core.multiarray.scalar(
            np.dtype(("V", test_string.dtype.itemsize)), test_string.tobytes())

        assert_(test_string_void_scalar.view(test_string.dtype) == test_string)

        #Create record scalar, construct from data and assert that
        #reconstructed scalar is correct.
        test_record = np.ones((), "i,i")
        test_record_void_scalar = np.core.multiarray.scalar(
            test_record.dtype, test_record.tobytes())

        assert_(test_record_void_scalar == test_record)

        # Test pickle and unpickle of void and record scalars
        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
            assert_(pickle.loads(
                pickle.dumps(test_string, protocol=proto)) == test_string)
            assert_(pickle.loads(
                pickle.dumps(test_record, protocol=proto)) == test_record) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_regression.py

示例6: iteratorFn

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def iteratorFn(self, data):
        ## Return 1) a function that will provide an iterator for data and 2) a list of header strings
        if isinstance(data, list) or isinstance(data, tuple):
            return lambda d: d.__iter__(), None
        elif isinstance(data, dict):
            return lambda d: iter(d.values()), list(map(asUnicode, data.keys()))
        elif (hasattr(data, 'implements') and data.implements('MetaArray')):
            if data.axisHasColumns(0):
                header = [asUnicode(data.columnName(0, i)) for i in range(data.shape[0])]
            elif data.axisHasValues(0):
                header = list(map(asUnicode, data.xvals(0)))
            else:
                header = None
            return self.iterFirstAxis, header
        elif isinstance(data, np.ndarray):
            return self.iterFirstAxis, None
        elif isinstance(data, np.void):
            return self.iterate, list(map(asUnicode, data.dtype.names))
        elif data is None:
            return (None,None)
        else:
            msg = "Don't know how to iterate over data type: {!s}".format(type(data))
            raise TypeError(msg) 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:25,代碼來源:TableWidget.py

示例7: test_void_scalar_constructor

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_void_scalar_constructor(self):
        #Issue #1550

        #Create test string data, construct void scalar from data and assert
        #that void scalar contains original data.
        test_string = np.array("test")
        test_string_void_scalar = np.core.multiarray.scalar(
            np.dtype(("V", test_string.dtype.itemsize)), test_string.tobytes())

        assert_(test_string_void_scalar.view(test_string.dtype) == test_string)

        #Create record scalar, construct from data and assert that
        #reconstructed scalar is correct.
        test_record = np.ones((), "i,i")
        test_record_void_scalar = np.core.multiarray.scalar(
            test_record.dtype, test_record.tobytes())

        assert_(test_record_void_scalar == test_record)

        #Test pickle and unpickle of void and record scalars
        assert_(pickle.loads(pickle.dumps(test_string)) == test_string)
        assert_(pickle.loads(pickle.dumps(test_record)) == test_record) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:test_regression.py

示例8: attributes_encoder

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def attributes_encoder(attr):
    """Custom encoder for copying file attributes in Python 3"""
    if isinstance(attr, (bytes, bytearray)):
        return attr.decode('utf-8')
    if isinstance(attr, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32,
        np.int64, np.uint8, np.uint16, np.uint32, np.uint64)):
        return int(attr)
    elif isinstance(attr, (np.float_, np.float16, np.float32, np.float64)):
        return float(attr)
    elif isinstance(attr, (np.ndarray)):
        if not isinstance(attr[0], (object)):
            return attr.tolist()
    elif isinstance(attr, (np.bool_)):
        return bool(attr)
    elif isinstance(attr, (np.void)):
        return None
    else:
        return attr

#-- PURPOSE: help module to describe the optional input parameters 
開發者ID:tsutterley,項目名稱:read-ICESat-2,代碼行數:22,代碼來源:convert_ICESat2_zarr.py

示例9: enlarge_space

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def enlarge_space(myci, civec, h1, eri, jk, eri_sorted, jk_sorted, norb, nelec):
    if not isinstance(civec, (tuple, list)):
        civec = [civec]

    strs = civec[0]._strs

    nroots = len(civec)

    cidx = abs(civec[0]) > myci.ci_coeff_cutoff
    for p in range(1,nroots):
        cidx += abs(civec[p]) > myci.ci_coeff_cutoff

    strs = strs[cidx]

    ci_coeff = [as_SCIvector(c[cidx], strs) for c in civec]
 
    strs_new = strs.copy()

    for p in range(nroots):
        str_add = select_strs_ctypes(myci, ci_coeff[p], h1, eri, jk, eri_sorted, jk_sorted, norb, nelec)
        strs_new = numpy.vstack((strs, str_add))

    # Add strings together and remove duplicate strings
    tmp = numpy.ascontiguousarray(strs_new).view(numpy.dtype((numpy.void, strs_new.dtype.itemsize * strs_new.shape[1])))
    _, tmpidx = numpy.unique(tmp, return_index=True)

    new_ci = []
    for p in range(nroots):
        c = numpy.zeros(strs_new.shape[0])
        c[:ci_coeff[p].shape[0]] = ci_coeff[p]
        new_ci.append(c[tmpidx])

    strs_new = strs_new[tmpidx]

    return [as_SCIvector(ci, strs_new) for ci in new_ci] 
開發者ID:pyscf,項目名稱:pyscf,代碼行數:37,代碼來源:hci.py

示例10: save

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def save(self, filename):
        assert filename.endswith('.h5')
        with h5py.File(filename, 'w') as f:
            for v in self.all_variables:
                f[v.name] = v.eval()
            # TODO: it would be nice to avoid pickle, but it's convenient to pass Python objects to _initialize
            # (like Gym spaces or numpy arrays)
            f.attrs['name'] = type(self).__name__
            f.attrs['args_and_kwargs'] = np.void(pickle.dumps((self.args, self.kwargs), protocol=-1)) 
開發者ID:openai,項目名稱:evolution-strategies-starter,代碼行數:11,代碼來源:policies.py

示例11: test_dataarray

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_dataarray():
    for dt_code in data_type_codes.value_set():
        data_type = data_type_codes.type[dt_code]
        if data_type is np.void: # not supported
            continue
        arr = np.zeros((10,3), dtype=data_type)
        da = GiftiDataArray.from_array(arr, 'triangle')
        assert_equal(da.datatype, data_type_codes[arr.dtype])
        bs_arr = arr.byteswap().newbyteorder()
        da = GiftiDataArray.from_array(bs_arr, 'triangle')
        assert_equal(da.datatype, data_type_codes[arr.dtype]) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:13,代碼來源:test_gifti.py

示例12: set_data_dtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def set_data_dtype(self, datatype):
        ''' Set numpy dtype for data from code or dtype or type

        Examples
        --------
        >>> hdr = AnalyzeHeader()
        >>> hdr.set_data_dtype(np.uint8)
        >>> hdr.get_data_dtype()
        dtype('uint8')
        >>> hdr.set_data_dtype(np.dtype(np.uint8))
        >>> hdr.get_data_dtype()
        dtype('uint8')
        >>> hdr.set_data_dtype('implausible') #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "implausible" not recognized
        >>> hdr.set_data_dtype('none') #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "none" known but not supported
        >>> hdr.set_data_dtype(np.void) #doctest: +IGNORE_EXCEPTION_DETAIL
        Traceback (most recent call last):
           ...
        HeaderDataError: data dtype "<type 'numpy.void'>" known but not supported
        '''
        try:
            code = self._data_type_codes[datatype]
        except KeyError:
            raise HeaderDataError(
                'data dtype "%s" not recognized' % datatype)
        dtype = self._data_type_codes.dtype[code]
        # test for void, being careful of user-defined types
        if dtype.type is np.void and not dtype.fields:
            raise HeaderDataError(
                'data dtype "%s" known but not supported' % datatype)
        self._structarr['datatype'] = code
        self._structarr['bitpix'] = dtype.itemsize * 8 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:39,代碼來源:analyze.py

示例13: test_data_dtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_data_dtype(self):
        # check getting and setting of data type
        # codes / types supported by all binary headers
        supported_types = ((2, np.uint8),
                           (4, np.int16),
                           (8, np.int32),
                           (16, np.float32),
                           (32, np.complex64),
                           (64, np.float64),
                           (128, np.dtype([('R','u1'),
                                           ('G', 'u1'),
                                           ('B', 'u1')])))
        # and unsupported - here using some labels instead
        unsupported_types = (np.void, 'none', 'all', 0)
        hdr = self.header_class()
        for code, npt in supported_types:
            # Can set with code value, or numpy dtype, both return the
            # dtype as output on get
            hdr.set_data_dtype(code)
            assert_equal(hdr.get_data_dtype(), npt)
            hdr.set_data_dtype(npt)
            assert_equal(hdr.get_data_dtype(), npt)
        for inp in unsupported_types:
            assert_raises(HeaderDataError,
                                hdr.set_data_dtype,
                                inp) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:28,代碼來源:test_analyze.py

示例14: test_datatypes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def test_datatypes():
    hdr = Nifti1Header()
    for code in data_type_codes.value_set():
        dt = data_type_codes.type[code]
        if dt == np.void:
            continue
        hdr.set_data_dtype(code)
        (assert_equal,
               hdr.get_data_dtype(),
               data_type_codes.dtype[code])
    # Check that checks also see new datatypes
    hdr.set_data_dtype(np.complex128)
    hdr.check_fix() 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:15,代碼來源:test_nifti1.py

示例15: _resize_with_dtype

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import void [as 別名]
def _resize_with_dtype(arr, dtype):
    """
    This function will transform arr into an array with the same type as dtype. It will do this by
    filling new columns with zeros (or NaNs, if it is a float column). Also, columns that are not
    in the new dtype will be dropped.
    """
    structured_arrays = dtype.names is not None and arr.dtype.names is not None
    old_columns = arr.dtype.names or []
    new_columns = dtype.names or []

    # In numpy 1.9 the ndarray.astype method used to handle changes in number of fields. The code below
    # should replicate the same behaviour the old astype used to have.
    #
    # One may be tempted to use np.lib.recfunctions.stack_arrays to implement both this step and the
    # concatenate that follows but it 2x slower and it requires providing your own default values (instead
    # of np.zeros).
    #
    # Numpy 1.14 supports doing new_arr[old_columns] = arr[old_columns], which is faster than the code below
    # (in benchmarks it seems to be even slightly faster than using the old astype). However, that is not
    # supported by numpy 1.9.2.
    if structured_arrays and (old_columns != new_columns):
        old_columns = set(old_columns)
        new_columns = set(new_columns)

        new_arr = np.zeros(arr.shape, dtype)
        for c in old_columns & new_columns:
            new_arr[c] = arr[c]

        # missing float columns should default to nan rather than zero
        _is_float_type = lambda _dtype: _dtype.type in (np.float32, np.float64)
        _is_void_float_type = lambda _dtype: _dtype.type == np.void and _is_float_type(_dtype.subdtype[0])
        _is_float_or_void_float_type = lambda _dtype: _is_float_type(_dtype) or _is_void_float_type(_dtype)
        _is_float = lambda column: _is_float_or_void_float_type(dtype.fields[column][0])
        for new_column in filter(_is_float, new_columns - old_columns):
            new_arr[new_column] = np.nan

        return new_arr.astype(dtype)
    else:
        return arr.astype(dtype) 
開發者ID:man-group,項目名稱:arctic,代碼行數:41,代碼來源:_ndarray_store.py


注:本文中的numpy.void方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。