本文整理匯總了Python中numpy.vander方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.vander方法的具體用法?Python numpy.vander怎麽用?Python numpy.vander使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.vander方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def __call__(self, xnew):
saveshape = np.shape(xnew)
xnew = np.ravel(xnew)
res = np.empty_like(xnew)
mask = (xnew >= self.a) & (xnew <= self.b)
res[~mask] = self.fill
xx = xnew.compress(mask)
indxs = np.searchsorted(self.breaks, xx)-1
indxs = indxs.clip(0, len(self.breaks))
pp = self.coeffs
diff = xx - self.breaks.take(indxs)
V = np.vander(diff, N=self.K)
# values = np.diag(dot(V,pp[:,indxs]))
values = array([dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))])
res[mask] = values
res.shape = saveshape
return res
示例2: _ppoly_eval_2
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan):
"""Evaluate piecewise polynomial manually (another way)"""
a = breaks[0]
b = breaks[-1]
K = coeffs.shape[0]
saveshape = np.shape(xnew)
xnew = np.ravel(xnew)
res = np.empty_like(xnew)
mask = (xnew >= a) & (xnew <= b)
res[~mask] = fill
xx = xnew.compress(mask)
indxs = np.searchsorted(breaks, xx)-1
indxs = indxs.clip(0, len(breaks))
pp = coeffs
diff = xx - breaks.take(indxs)
V = np.vander(diff, N=K)
values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))])
res[mask] = values
res.shape = saveshape
return res
示例3: linest
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def linest(*args, **kwargs): # Excel reference: https://support.office.com/en-us/article/LINEST-function-84d7d0d9-6e50-4101-977a-fa7abf772b6d
Y = list(args[0].values())
X = list(args[1].values())
if len(args) == 3:
const = args[2]
if isinstance(const,str):
const = (const.lower() == "true")
else:
const = True
degree = kwargs.get('degree',1)
# build the vandermonde matrix
A = np.vander(X, degree+1)
if not const:
# force the intercept to zero
A[:,-1] = np.zeros((1,len(X)))
# perform the fit
(coefs, residuals, rank, sing_vals) = np.linalg.lstsq(A, Y)
return coefs
示例4: Nordsieck_RKn
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def Nordsieck_RKn(self,t0,y,sw0):
s=self.number_of_steps
H=(s-1)*self.H
co_nord=[N.array([1./2,1.]),N.array([2./5,3./5,1.])]
l=size(y,0)
y0=y[0,:]
yf=self.f(t0,y0,sw0)
if l==3:
co=N.array([co_nord[0]])
nord_n=N.vander(co_nord[0],self.number_of_steps+1)
b=y[1:]-y0-co.T*yf
nord=Sc.solve(nord_n[0:2,0:2],b)
elif l==4:
co=N.array([co_nord[1]])
nord_n=N.vander(co_nord[1],self.number_of_steps+1)
b=y[1:]-y0-H*co.T*yf
nord=Sc.solve(nord_n[0:3,0:3],b)
nord=N.vstack((y0,H*yf,nord[::-1]))
return nord
示例5: vander
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def vander(x, n=None):
"""
Masked values in the input array result in rows of zeros.
"""
_vander = np.vander(x, n)
m = getmask(x)
if m is not nomask:
_vander[m] = 0
return _vander
示例6: detrend
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def detrend(x, order=1, axis=0):
"""
Detrend an array with a trend of given order along axis 0 or 1
Parameters
----------
x : array_like, 1d or 2d
data, if 2d, then each row or column is independently detrended with the
same trendorder, but independent trend estimates
order : int
specifies the polynomial order of the trend, zero is constant, one is
linear trend, two is quadratic trend
axis : int
axis can be either 0, observations by rows,
or 1, observations by columns
Returns
-------
detrended data series : ndarray
The detrended series is the residual of the linear regression of the
data on the trend of given order.
"""
if x.ndim == 2 and int(axis) == 1:
x = x.T
elif x.ndim > 2:
raise NotImplementedError('x.ndim > 2 is not implemented until it is needed')
nobs = x.shape[0]
if order == 0:
# Special case demean
resid = x - x.mean(axis=0)
else:
trends = np.vander(np.arange(float(nobs)), N=order + 1)
beta = np.linalg.pinv(trends).dot(x)
resid = x - np.dot(trends, beta)
if x.ndim == 2 and int(axis) == 1:
resid = resid.T
return resid
示例7: reset_ramsey
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def reset_ramsey(res, degree=5):
'''Ramsey's RESET specification test for linear models
This is a general specification test, for additional non-linear effects
in a model.
Notes
-----
The test fits an auxiliary OLS regression where the design matrix, exog,
is augmented by powers 2 to degree of the fitted values. Then it performs
an F-test whether these additional terms are significant.
If the p-value of the f-test is below a threshold, e.g. 0.1, then this
indicates that there might be additional non-linear effects in the model
and that the linear model is mis-specified.
References
----------
http://en.wikipedia.org/wiki/Ramsey_RESET_test
'''
order = degree + 1
k_vars = res.model.exog.shape[1]
#vander without constant and x:
y_fitted_vander = np.vander(res.fittedvalues, order)[:, :-2] #drop constant
exog = np.column_stack((res.model.exog, y_fitted_vander))
res_aux = OLS(res.model.endog, exog).fit()
#r_matrix = np.eye(degree, exog.shape[1], k_vars)
r_matrix = np.eye(degree-1, exog.shape[1], k_vars)
#df1 = degree - 1
#df2 = exog.shape[0] - degree - res.df_model (without constant)
return res_aux.f_test(r_matrix) #, r_matrix, res_aux
示例8: vander
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def vander(x, n=None):
"""
Masked values in the input array result in rows of zeros.
"""
_vander = np.vander(x, n)
m = getmask(x)
if m is not nomask:
_vander[m] = 0
return _vander
示例9: test_graph_laplacian
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def test_graph_laplacian():
mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]',
'np.ones((7, 7))',
'np.eye(19)',
'sparse.diags([1, 1], [-1, 1], shape=(4,4))',
'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()',
'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())',
'np.vander(np.arange(4)) + np.vander(np.arange(4)).T',
)
for mat_str in mats:
for normed in (True, False):
yield _check_graph_laplacian, mat_str, normed
示例10: test_gmres_basic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def test_gmres_basic():
A = np.vander(np.arange(10) + 1)[:, ::-1]
b = np.zeros(10)
b[0] = 1
x = np.linalg.solve(A, b)
x_gm, err = gmres(A, b, restart=5, maxiter=1)
assert_allclose(x_gm[0], 0.359, rtol=1e-2)
示例11: testVander
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def testVander(self, shape, dtype, n, increasing, rng_factory):
rng = rng_factory()
def onp_fun(arg):
arg = arg.astype(onp.float32) if dtype == lnp.bfloat16 else arg
return onp.vander(arg, N=n, increasing=increasing)
lnp_fun = lambda arg: lnp.vander(arg, N=n, increasing=increasing)
args_maker = lambda: [rng([shape], dtype)]
# np.vander seems to return float64 for all floating types. We could obey
# those semantics, but they seem like a bug.
self._CheckAgainstNumpy(onp_fun, lnp_fun, args_maker, check_dtypes=False,
tol={onp.float32: 1e-3})
self._CompileAndCheck(
lnp_fun, args_maker, check_dtypes=False, check_incomplete_shape=True)
示例12: vander
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def vander(x, N=None, increasing=False): # pylint: disable=missing-docstring,invalid-name
x = asarray(x).data
x_shape = tf.shape(x)
N = N or x_shape[0]
N_temp = utils.get_static_value(N) # pylint: disable=invalid-name
if N_temp is not None:
N = N_temp
if N < 0:
raise ValueError('N must be nonnegative')
else:
tf.debugging.Assert(N >= 0, [N])
rank = tf.rank(x)
rank_temp = utils.get_static_value(rank)
if rank_temp is not None:
rank = rank_temp
if rank != 1:
raise ValueError('x must be a one-dimensional array')
else:
tf.debugging.Assert(rank == 1, [rank])
if increasing:
start = 0
limit = N
delta = 1
else:
start = N - 1
limit = -1
delta = -1
x = tf.expand_dims(x, -1)
return utils.tensor_to_ndarray(
tf.math.pow(x, tf.cast(tf.range(start, limit, delta), dtype=x.dtype)))
示例13: test_symmetric_graph_laplacian
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def test_symmetric_graph_laplacian():
symmetric_mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]',
'np.ones((7, 7))',
'np.eye(19)',
'sparse.diags([1, 1], [-1, 1], shape=(4,4))',
'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()',
'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())',
'np.vander(np.arange(4)) + np.vander(np.arange(4)).T')
for mat_str in symmetric_mats:
for normed in True, False:
_check_symmetric_graph_laplacian(mat_str, normed)
示例14: test_gmres_basic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def test_gmres_basic():
A = np.vander(np.arange(10) + 1)[:, ::-1]
b = np.zeros(10)
b[0] = 1
x = np.linalg.solve(A, b)
with suppress_warnings() as sup:
sup.filter(DeprecationWarning, ".*called without specifying.*")
x_gm, err = gmres(A, b, restart=5, maxiter=1)
assert_allclose(x_gm[0], 0.359, rtol=1e-2)
示例15: albrecht_5
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import vander [as 別名]
def albrecht_5():
# The values are solutions of
# 6317094x^3 - 10022245*x^2 + 4149900*x - 336375 = 0
sigma2 = roots([6317094, -10022245, 4149900, -336375])
A = numpy.vander(sigma2, increasing=True).T
b = numpy.array([frac(168899, 1350000), frac(7661, 180000), frac(71, 3000)])
B = linear_solve(A, b)
sqrt19 = sqrt(19)
# ERR Stroud incorrectly lists sqrt(10) for s1.
s1, s2 = sqrt((125 - pm_ * 10 * sqrt19) / 366)
# ERR Stroud incorrectly lists 749489_3_.0 instead of 749489_2_.0
C1, C2 = (7494892 + pm_ * 1053263 * sqrt19) / 205200000
D = frac(81, 3125)
u = sqrt(frac(5, 6)) * cos(pi / 8)
v = sqrt(frac(5, 6)) * sin(pi / 8)
data = [
(B[0], fsd(2, (sqrt(sigma2[0]), 1))),
(B[1], fsd(2, (sqrt(sigma2[1]), 1))),
(B[2], fsd(2, (sqrt(sigma2[2]), 1))),
(C1, pm([s1, s1])),
(C2, pm([s2, s2])),
(D, fsd(2, (u, 1), (v, 1))),
]
points, weights = untangle(data)
return S2Scheme("Albrecht 5", weights, points, 11, _source)