本文整理匯總了Python中numpy.ushort方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.ushort方法的具體用法?Python numpy.ushort怎麽用?Python numpy.ushort使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.ushort方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError:
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)
示例2: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError: # pragma: no cover
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)
示例3: _all_safe
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def _all_safe(self, features: np.ndarray, times: np.array,
censoring: np.array):
if not set(np.unique(censoring)).issubset({0, 1}):
raise ValueError('``censoring`` must only have values in {0, 1}')
# All times must be positive
if not np.all(times >= 0):
raise ValueError('``times`` array must contain only non-negative '
'entries')
features = safe_array(features)
times = safe_array(times)
censoring = safe_array(censoring, np.ushort)
return features, times, censoring
示例4: _set_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def _set_data(self, features: np.ndarray, times: np.array,
censoring: np.array): #
if self.dtype is None:
self.dtype = features.dtype
if self.dtype != times.dtype:
raise ValueError("Features and labels differ in data types")
n_samples, n_features = features.shape
if n_samples != times.shape[0]:
raise ValueError(("Features has %i samples while times "
"have %i" % (n_samples, times.shape[0])))
if n_samples != censoring.shape[0]:
raise ValueError(("Features has %i samples while censoring "
"have %i" % (n_samples, censoring.shape[0])))
features = safe_array(features, dtype=self.dtype)
times = safe_array(times, dtype=self.dtype)
censoring = safe_array(censoring, np.ushort)
self._set("features", features)
self._set("times", times)
self._set("censoring", censoring)
self._set("n_samples", n_samples)
self._set("n_features", n_features)
self._set(
"_model", dtype_class_mapper[self.dtype](self.features, self.times,
self.censoring))
示例5: _simulate
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def _simulate(self):
# The features matrix already exists, and is created by the
# super class
features = self.features
n_samples, n_features = features.shape
u = features.dot(self.coeffs)
# Simulation of true times
E = np.random.exponential(scale=1., size=n_samples)
E *= np.exp(-u)
scale = self.scale
shape = self.shape
if self.times_distribution == "weibull":
T = 1. / scale * E ** (1. / shape)
else:
# There is not point in this test, but let's do it like that
# since we're likely to implement other distributions
T = 1. / scale * E ** (1. / shape)
m = T.mean()
# Simulation of the censoring
c = self.censoring_factor
C = np.random.exponential(scale=c * m, size=n_samples)
# Observed time
self._set("times", np.minimum(T, C).astype(self.dtype))
# Censoring indicator: 1 if it is a time of failure, 0 if it's
# censoring. It is as int8 and not bool as we might need to
# construct a memory access on it later
censoring = (T <= C).astype(np.ushort)
self._set("censoring", censoring)
return self.features, self.times, self.censoring
示例6: test_SimuCoxReg
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def test_SimuCoxReg(self):
"""...Test simulation of a Cox Regression
"""
# Simulate a Cox model with specific seed
n_samples = 10
n_features = 3
idx = np.arange(n_features)
# Parameters of the Cox simu
coeffs = np.exp(-idx / 10.)
coeffs[::2] *= -1
seed = 123
simu = SimuCoxReg(coeffs, n_samples=n_samples, seed=seed,
verbose=False)
features_, times_, censoring_ = simu.simulate()
times = np.array([
1.5022119, 5.93102441, 6.82837051, 0.50940341, 0.14859682,
30.22922996, 3.54945974, 0.8671229, 1.4228358, 0.11483298
])
censoring = np.array([1, 0, 1, 1, 1, 1, 1, 1, 0, 1], dtype=np.ushort)
features = np.array([[1.4912667, 0.80881799, 0.26977298], [
1.23227551, 0.50697013, 1.9409132
], [1.8891494, 1.49834791,
2.41445794], [0.19431319, 0.80245126, 1.02577552], [
-1.61687582, -1.08411865, -0.83438387
], [2.30419894, -0.68987056,
-0.39750262],
[-0.28826405, -1.23635074, -0.76124386], [
-1.32869473, -1.8752391, -0.182537
], [0.79464218, 0.65055633, 1.57572506],
[0.71524202, 1.66759831, 0.88679047]])
np.testing.assert_almost_equal(features, features_)
np.testing.assert_almost_equal(times, times_)
np.testing.assert_almost_equal(censoring, censoring_)
示例7: test_numpy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def test_numpy(self):
"""NumPy objects get serialized to readable JSON."""
l = [
np.float32(12.5),
np.float64(2.0),
np.float16(0.5),
np.bool(True),
np.bool(False),
np.bool_(True),
np.unicode_("hello"),
np.byte(12),
np.short(12),
np.intc(-13),
np.int_(0),
np.longlong(100),
np.intp(7),
np.ubyte(12),
np.ushort(12),
np.uintc(13),
np.ulonglong(100),
np.uintp(7),
np.int8(1),
np.int16(3),
np.int32(4),
np.int64(5),
np.uint8(1),
np.uint16(3),
np.uint32(4),
np.uint64(5),
]
l2 = [l, np.array([1, 2, 3])]
roundtripped = loads(dumps(l2, cls=EliotJSONEncoder))
self.assertEqual([l, [1, 2, 3]], roundtripped)
示例8: write_mhd_file
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def write_mhd_file(filename: PathLike, data: np.ndarray, **meta_dict):
"""
Write a meta file and the raw file.
The byte order of the raw file will always be in the byte order of the system.
:param filename: file to write
:param meta_dict: dictionary of meta data in MetaImage format
"""
assert filename[-4:] == '.mhd'
meta_dict['ObjectType'] = 'Image'
meta_dict['BinaryData'] = 'True'
meta_dict['BinaryDataByteOrderMSB'] = 'False' if sys.byteorder == 'little' else 'True'
if data.dtype == np.float32:
meta_dict['ElementType'] = 'MET_FLOAT'
elif data.dtype == np.double or data.dtype == np.float64:
meta_dict['ElementType'] = 'MET_DOUBLE'
elif data.dtype == np.byte:
meta_dict['ElementType'] = 'MET_CHAR'
elif data.dtype == np.uint8 or data.dtype == np.ubyte:
meta_dict['ElementType'] = 'MET_UCHAR'
elif data.dtype == np.short or data.dtype == np.int16:
meta_dict['ElementType'] = 'MET_SHORT'
elif data.dtype == np.ushort or data.dtype == np.uint16:
meta_dict['ElementType'] = 'MET_USHORT'
elif data.dtype == np.int32:
meta_dict['ElementType'] = 'MET_INT'
elif data.dtype == np.uint32:
meta_dict['ElementType'] = 'MET_UINT'
else:
raise NotImplementedError("ElementType " + str(data.dtype) + " not implemented.")
dsize = list(data.shape)
if 'ElementNumberOfChannels' in meta_dict.keys():
element_channels = int(meta_dict['ElementNumberOfChannels'])
assert(dsize[-1] == element_channels)
dsize = dsize[:-1]
else:
element_channels = 1
dsize.reverse()
meta_dict['NDims'] = str(len(dsize))
meta_dict['DimSize'] = dsize
meta_dict['ElementDataFile'] = str(Path(filename).name).replace('.mhd', '.raw')
print(str(Path(filename).name).replace('.mhd', '.raw'))
# Tags that need conversion of list to string
tags = ['ElementSpacing', 'Offset', 'DimSize', 'CenterOfRotation', 'TransformMatrix']
for tag in tags:
if tag in meta_dict.keys() and not isinstance(meta_dict[tag], str):
meta_dict[tag] = ' '.join([str(i) for i in meta_dict[tag]])
write_meta_header(filename, meta_dict)
# Compute absolute path to write to
pwd = Path(filename).parents[0].resolve()
data_file = Path(meta_dict['ElementDataFile'])
if not data_file.is_absolute():
data_file = pwd / data_file
# Dump raw data
data = data.reshape(dsize[0], -1, element_channels)
with open(data_file, 'wb') as f:
data.tofile(f)
示例9: test_SimuCoxRegWithCutPoints
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import ushort [as 別名]
def test_SimuCoxRegWithCutPoints(self):
"""...Test simulation of a Cox Regression with cut-points
"""
# Simulate a Cox model with cut-points with specific seed
n_samples = 10
n_features = 3
n_cut_points = 2
cov_corr = .5
sparsity = .2
seed = 123
simu = SimuCoxRegWithCutPoints(n_samples=n_samples,
n_features=n_features,
seed=seed, verbose=False,
n_cut_points=n_cut_points,
shape=2, scale=.1, cov_corr=cov_corr,
sparsity=sparsity)
features_, times_, censoring_, cut_points_, coeffs_binarized_, S_ = simu.simulate()
times = np.array([6.12215425, 6.74403919, 5.2148425, 5.42903238,
2.42953933, 9.50705158, 18.49545933, 19.7929349,
0.39267278, 1.24799812])
censoring = np.array([1, 0, 0, 1, 0, 1, 1, 1, 0, 1], dtype=np.ushort)
features = np.array([[1.4912667, 0.80881799, 0.26977298],
[1.23227551, 0.50697013, 1.9409132],
[1.8891494, 1.49834791, 2.41445794],
[0.19431319, 0.80245126, 1.02577552],
[-1.61687582, -1.08411865, -0.83438387],
[2.30419894, -0.68987056, -0.39750262],
[-0.28826405, -1.23635074, -0.76124386],
[-1.32869473, -1.8752391, -0.182537],
[0.79464218, 0.65055633, 1.57572506],
[0.71524202, 1.66759831, 0.88679047]])
cut_points = {'0': np.array([-np.inf, -0.28826405, 0.79464218, np.inf]),
'1': np.array([-np.inf, -1.23635074, 0.50697013, np.inf]),
'2': np.array([-np.inf, -0.182537, 0.88679047, np.inf])}
coeffs_binarized = np.array([-1.26789642, 1.31105319, -0.04315676, 0.,
0., 0., 0.01839684, 0.4075832,
-0.42598004])
S = np.array([1])
np.testing.assert_almost_equal(features, features_)
np.testing.assert_almost_equal(times, times_)
np.testing.assert_almost_equal(censoring, censoring_)
np.testing.assert_almost_equal(cut_points_['0'], cut_points['0'])
np.testing.assert_almost_equal(cut_points_['1'], cut_points['1'])
np.testing.assert_almost_equal(cut_points_['2'], cut_points['2'])
np.testing.assert_almost_equal(coeffs_binarized, coeffs_binarized_)
np.testing.assert_almost_equal(S, S_)