當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.unique方法代碼示例

本文整理匯總了Python中numpy.unique方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.unique方法的具體用法?Python numpy.unique怎麽用?Python numpy.unique使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.unique方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_one_hot

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def test_one_hot():
    """Check if one_hot returns correct label matrices."""
    # Generate label vector
    y = np.hstack((np.ones((10,))*0,
                   np.ones((10,))*1,
                   np.ones((10,))*2))

    # Map to matrix
    Y, labels = one_hot(y)

    # Check for only 0's and 1's
    assert len(np.setdiff1d(np.unique(Y), [0, 1])) == 0

    # Check for correct labels
    assert np.all(labels == np.unique(y))

    # Check correct shape of matrix
    assert Y.shape[0] == y.shape[0]
    assert Y.shape[1] == len(labels) 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:21,代碼來源:test_util.py

示例2: find_match

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def find_match(self, pred, gt):
    '''
    Match component to balls.
    '''
    batch_size, n_frames_input, n_components, _ = pred.shape
    diff = pred.reshape(batch_size, n_frames_input, n_components, 1, 2) - \
               gt.reshape(batch_size, n_frames_input, 1, n_components, 2)
    diff = np.sum(np.sum(diff ** 2, axis=-1), axis=1)
    # Direct indices
    indices = np.argmin(diff, axis=2)
    ambiguous = np.zeros(batch_size, dtype=np.int8)
    for i in range(batch_size):
      _, counts = np.unique(indices[i], return_counts=True)
      if not np.all(counts == 1):
        ambiguous[i] = 1
    return indices, ambiguous 
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:18,代碼來源:metrics.py

示例3: prepro_pos_table

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def prepro_pos_table(pos_tables):
    """Extracts unique positions and sorts them."""
    if not isinstance(pos_tables, list):
        pos_tables = [pos_tables]

    pos_table = None
    for next_pos_table in pos_tables:
        if pos_table is None:
            pos_table = next_pos_table
        else:
            pos_table = pd.concat([pos_table, next_pos_table])
        pos_table = pos_table.groupby('chromo').apply(
            lambda df: pd.DataFrame({'pos': np.unique(df['pos'])}))
        pos_table.reset_index(inplace=True)
        pos_table = pos_table[['chromo', 'pos']]
        pos_table.sort_values(['chromo', 'pos'], inplace=True)
    return pos_table 
開發者ID:kipoi,項目名稱:models,代碼行數:19,代碼來源:dataloader_m.py

示例4: init_W

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def init_W(self, mode='normal'):

        self.W = {}

        if (self.status != 'load_train_data') and (self.status != 'train'):
            print("Please load train data first.")
            return self.W

        self.status = 'init'

        self.data_num = len(self.train_Y)
        self.data_demension = len(self.train_X[0])
        self.class_list = list(itertools.combinations(np.unique(self.train_Y), 2))

        for class_item in self.class_list:
            self.W[class_item] = np.zeros(self.data_demension)

        return self.W 
開發者ID:fukuball,項目名稱:fuku-ml,代碼行數:20,代碼來源:RidgeRegression.py

示例5: visualize_sampling

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def visualize_sampling(self,permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations
        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show()

    # Heatmap of attention (x=cities; y=steps) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:23,代碼來源:dataset.py

示例6: visualize_sampling

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def visualize_sampling(self, permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0

        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations

        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show() 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:23,代碼來源:dataset.py

示例7: rand_indices

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def rand_indices(x, rand_attr):
    """
    Function randomly selects features without replacement. It used with random forest. Selected features must have more
    than one distinct value.
    x: numpy array - dataset
    rand_attr - parameter defines number of randomly selected features
    """
    loop = True
    indices = range(len(x[0]))

    while loop:
        loop = False
        # randomly selected features without replacement
        rand_list = random.sample(indices, rand_attr)
        for i in rand_list:
            if len(np.unique(x[:, i])) == 1:
                loop = True
                indices.remove(i)
                if len(indices) == rand_attr - 1:
                    return -1  # all features in dataset have one distinct value
                break
    return rand_list 
開發者ID:romanorac,項目名稱:discomll,代碼行數:24,代碼來源:decision_tree.py

示例8: count_super

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def count_super(p, m, counters, preds, labels, label_to_ch):
    
    for l in np.unique(labels):
        preds_l = preds[labels == l]
        
        # in -> known
        if label_to_ch[l]:
            acc = np.zeros_like(preds_l, dtype=bool)
            for c in label_to_ch[l]:
                if p == 0: counters['data'][m][c] += preds_l.shape[0]
                acc |= (preds_l == c)
            acc_sum = acc.sum()
            for c in label_to_ch[l]:
                counters['acc'][p,m][c] += acc_sum
        
        # out -> novel
        else:
            if p == 0: counters['data'][m][-1] += preds_l.shape[0]
            acc_sum = (preds_l < 0).sum()
            counters['acc'][p,m][-1] += acc_sum 
開發者ID:kibok90,項目名稱:cvpr2018-hnd,代碼行數:22,代碼來源:test.py

示例9: print_mutation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def print_mutation(hyp, results, bucket=''):
    # Print mutation results to evolve.txt (for use with train.py --evolve)
    a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
    b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
    c = '%10.3g' * len(results) % results  # results (P, R, mAP, F1, test_loss)
    print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))

    if bucket:
        os.system('gsutil cp gs://%s/evolve.txt .' % bucket)  # download evolve.txt

    with open('evolve.txt', 'a') as f:  # append result
        f.write(c + b + '\n')
    x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
    np.savetxt('evolve.txt', x[np.argsort(-fitness(x))], '%10.3g')  # save sort by fitness

    if bucket:
        os.system('gsutil cp evolve.txt gs://%s' % bucket)  # upload evolve.txt 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:19,代碼來源:utils.py

示例10: estimate_mu

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def estimate_mu(self, _X1, _Y1, _X2, _Y2):
        adist_m = proxy_a_distance(_X1, _X2)
        C = len(np.unique(_Y1))
        epsilon = 1e-3
        list_adist_c = []
        for i in range(1, C + 1):
            ind_i, ind_j = np.where(_Y1 == i), np.where(_Y2 == i)
            Xsi = _X1[ind_i[0], :]
            Xtj = _X2[ind_j[0], :]
            adist_i = proxy_a_distance(Xsi, Xtj)
            list_adist_c.append(adist_i)
        adist_c = sum(list_adist_c) / C
        mu = adist_c / (adist_c + adist_m)
        if mu > 1:
            mu = 1
        if mu < epsilon:
            mu = 0
        return mu 
開發者ID:jindongwang,項目名稱:transferlearning,代碼行數:20,代碼來源:MEDA.py

示例11: BestMap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def BestMap(L1, L2):

    L1 = L1.flatten(order='F').astype(float)
    L2 = L2.flatten(order='F').astype(float)
    if L1.size != L2.size:
        sys.exit('size(L1) must == size(L2)')
    Label1 = np.unique(L1)
    nClass1 = Label1.size
    Label2 = np.unique(L2)
    nClass2 = Label2.size
    nClass = max(nClass1, nClass2)

    # For Hungarian - Label2 are Workers, Label1 are Tasks.
    G = np.zeros([nClass, nClass]).astype(float)
    for i in range(0, nClass2):
        for j in range(0, nClass1):
            G[i, j] = np.sum(np.logical_and(L2 == Label2[i], L1 == Label1[j]))

    c = Hungarian(-G)
    newL2 = np.zeros(L2.shape)
    for i in range(0, nClass2):
        newL2[L2 == Label2[i]] = Label1[c[i]]
    return newL2 
開發者ID:abhinav4192,項目名稱:sparse-subspace-clustering-python,代碼行數:25,代碼來源:BestMap.py

示例12: _add_choices

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def _add_choices(self, nchoices):
        if isinstance(nchoices, int):
            self.nchoices = nchoices
            self.choice_names = None
        elif isinstance(nchoices, list) or nchoices.__class__.__name__ == "Series" or nchoices.__class__.__name__ == "DataFrame":
            self.choice_names = np.array(nchoices).reshape(-1)
            self.nchoices = self.choice_names.shape[0]
            if np.unique(self.choice_names).shape[0] != self.choice_names.shape[0]:
                raise ValueError("Arm/choice names contain duplicates.")
        elif isinstance(nchoices, np.ndarray):
            self.choice_names = nchoices.reshape(-1)
            self.nchoices = self.choice_names.shape[0]
            if np.unique(self.choice_names).shape[0] != self.choice_names.shape[0]:
                raise ValueError("Arm/choice names contain duplicates.")
        else:
            raise ValueError("'nchoices' must be an integer or list with named arms.") 
開發者ID:david-cortes,項目名稱:contextualbandits,代碼行數:18,代碼來源:online.py

示例13: _partial_fit_single

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def _partial_fit_single(self, choice, X, a, r):
        yclass, this_choice = self._filter_arm_data(X, a, r, choice)
        if self.smooth is not None:
            self.counters[0, choice] += yclass.shape[0]

        xclass = X[this_choice, :]
        do_full_refit = False
        if self.buffer is not None:
            do_full_refit = self.buffer[choice].do_full_refit()
            xclass, yclass = self.buffer[choice].get_batch(xclass, yclass)

        if (xclass.shape[0] > 0) or self.force_fit:
            if (do_full_refit) and (np.unique(yclass).shape[0] >= 2):
                self.algos[choice].fit(xclass, yclass)
            else:
                self.algos[choice].partial_fit(xclass, yclass, classes = [0, 1])

        ## update the beta counters if needed
        if (self.force_counters):
            self._update_beta_counters(yclass, choice) 
開發者ID:david-cortes,項目名稱:contextualbandits,代碼行數:22,代碼來源:utils.py

示例14: fit

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def fit(self, X, y, *args, **kwargs):
        if X.shape[0] == 0:
            return self
        elif np.unique(y).shape[0] <= 1:
            return self
        self.model.fit(X, y)
        var = self.model.predict_proba(X)[:,1]
        var = var * (1 - var)   
        n = X.shape[1]
        self.Sigma = np.zeros((n+self.fit_intercept, n+self.fit_intercept), dtype=ctypes.c_double)
        X, Xcsr = self._process_X(X)
        _wrapper_double.update_matrices_noinv(
            X,
            np.empty(0, dtype=ctypes.c_double),
            var,
            self.Sigma,
            np.empty(0, dtype=ctypes.c_double),
            Xcsr = Xcsr,
            add_bias=self.fit_intercept,
            overwrite=1
        )
        _matrix_inv_symm(self.Sigma, self.lambda_)
        self.is_fitted = True 
開發者ID:david-cortes,項目名稱:contextualbandits,代碼行數:25,代碼來源:utils.py

示例15: one_hot

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import unique [as 別名]
def one_hot(y, fill_k=False, one_not=False):
    """Map to one-hot encoding."""
    # Check labels
    labels = np.unique(y)

    # Number of classes
    K = len(labels)

    # Number of samples
    N = y.shape[0]

    # Preallocate array
    if one_not:
        Y = -np.ones((N, K))
    else:
        Y = np.zeros((N, K))

    # Set k-th column to 1 for n-th sample
    for n in range(N):

        # Map current class to index label
        y_n = (y[n] == labels)

        if fill_k:
            Y[n, y_n] = y_n
        else:
            Y[n, y_n] = 1

    return Y, labels 
開發者ID:wmkouw,項目名稱:libTLDA,代碼行數:31,代碼來源:util.py


注:本文中的numpy.unique方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。