當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.union1d方法代碼示例

本文整理匯總了Python中numpy.union1d方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.union1d方法的具體用法?Python numpy.union1d怎麽用?Python numpy.union1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.union1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _optimize_2D

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def _optimize_2D(nodes, triangles, stay=[]):
    ''' Optimize the locations of the points by moving them towards the center
    of their patch. This is done iterativally for all points for a number of
    iterations and using a .05 step length'''
    edges, tr_edges, adjacency_list = _edge_list(triangles)
    boundary = edges[adjacency_list[:, 1] == -1].reshape(-1)
    stay = np.union1d(boundary, stay)
    stay = stay.astype(int)
    n_iter = 5
    step_length = .05
    mean_bar = np.zeros_like(nodes)
    new_nodes = np.copy(nodes)
    k = np.bincount(triangles.reshape(-1), minlength=len(nodes))
    for n in range(n_iter):
        bar = np.mean(new_nodes[triangles], axis=1)
        for i in range(2):
            mean_bar[:, i] = np.bincount(triangles.reshape(-1),
                                         weights=np.repeat(bar[:, i], 3),
                                         minlength=len(nodes))
        mean_bar /= k[:, None]
        new_nodes += step_length * (mean_bar - new_nodes)
        new_nodes[stay] = nodes[stay]
    return new_nodes 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:25,代碼來源:electrode_placement.py

示例2: testUnion1dExecution

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def testUnion1dExecution(self):
        rs = np.random.RandomState(0)
        raw1 = rs.random(10)
        raw2 = rs.random(9)

        t1 = tensor(raw1, chunk_size=3)
        t2 = tensor(raw2, chunk_size=4)

        t = union1d(t1, t2, aggregate_size=1)
        res = self.executor.execute_tensor(t, concat=True)[0]
        expected = np.union1d(raw1, raw2)
        np.testing.assert_array_equal(res, expected)

        t = union1d(t1, t2)
        res = self.executor.execute_tensor(t, concat=True)[0]
        expected = np.union1d(raw1, raw2)
        np.testing.assert_array_equal(res, expected) 
開發者ID:mars-project,項目名稱:mars,代碼行數:19,代碼來源:test_merge_execute.py

示例3: compute_miou

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def compute_miou(coords, preds, targets, weights):
    coords, preds, targets, weights = filter_points(coords, preds, targets, weights)
    seen_classes = np.unique(targets)
    mask = np.zeros(CONF.NUM_CLASSES)
    mask[seen_classes] = 1

    pointmiou = np.zeros(CONF.NUM_CLASSES)
    voxmiou = np.zeros(CONF.NUM_CLASSES)

    uvidx, uvlabel, _ = point_cloud_label_to_surface_voxel_label_fast(coords, np.concatenate((np.expand_dims(targets,1),np.expand_dims(preds,1)),axis=1), res=0.02)
    for l in seen_classes:
        target_label = np.arange(targets.shape[0])[targets==l]
        pred_label = np.arange(preds.shape[0])[preds==l]
        num_intersection_label = np.intersect1d(pred_label, target_label).shape[0]
        num_union_label = np.union1d(pred_label, target_label).shape[0]
        pointmiou[l] = num_intersection_label / (num_union_label + 1e-8)

        target_label_vox = uvidx[(uvlabel[:, 0] == l)]
        pred_label_vox = uvidx[(uvlabel[:, 1] == l)]
        num_intersection_label_vox = np.intersect1d(pred_label_vox, target_label_vox).shape[0]
        num_union_label_vox = np.union1d(pred_label_vox, target_label_vox).shape[0]
        voxmiou[l] = num_intersection_label_vox / (num_union_label_vox + 1e-8)

    return pointmiou, voxmiou, mask 
開發者ID:daveredrum,項目名稱:Pointnet2.ScanNet,代碼行數:26,代碼來源:eval.py

示例4: cov_params_wo_det

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def cov_params_wo_det(self):
        # rows & cols to be dropped (related to deterministic terms inside the
        # cointegration relation)
        start_i = self.neqs**2  # first elements belong to alpha @ beta.T
        end_i = start_i + self.neqs * self.det_coef_coint.shape[0]
        to_drop_i = np.arange(start_i, end_i)

        # rows & cols to be dropped (related to deterministic terms outside of
        # the cointegration relation)
        cov = self.cov_params_default
        cov_size = len(cov)
        to_drop_o = np.arange(cov_size-self.det_coef.size, cov_size)

        to_drop = np.union1d(to_drop_i, to_drop_o)

        mask = np.ones(cov.shape, dtype=bool)
        mask[to_drop] = False
        mask[:, to_drop] = False
        cov_size_new = mask.sum(axis=0)[0]
        return cov[mask].reshape((cov_size_new, cov_size_new))

    # standard errors: 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:vecm.py

示例5: test_stratified_shuffle_split_overlap_train_test_bug

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_stratified_shuffle_split_overlap_train_test_bug():
    # See https://github.com/scikit-learn/scikit-learn/issues/6121 for
    # the original bug report
    y = [0, 1, 2, 3] * 3 + [4, 5] * 5
    X = np.ones_like(y)

    sss = StratifiedShuffleSplit(n_splits=1,
                                 test_size=0.5, random_state=0)

    train, test = next(sss.split(X=X, y=y))

    # no overlap
    assert_array_equal(np.intersect1d(train, test), [])

    # complete partition
    assert_array_equal(np.union1d(train, test), np.arange(len(y))) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_split.py

示例6: test_stratified_shuffle_split_multilabel

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_stratified_shuffle_split_multilabel():
    # fix for issue 9037
    for y in [np.array([[0, 1], [1, 0], [1, 0], [0, 1]]),
              np.array([[0, 1], [1, 1], [1, 1], [0, 1]])]:
        X = np.ones_like(y)
        sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
        train, test = next(sss.split(X=X, y=y))
        y_train = y[train]
        y_test = y[test]

        # no overlap
        assert_array_equal(np.intersect1d(train, test), [])

        # complete partition
        assert_array_equal(np.union1d(train, test), np.arange(len(y)))

        # correct stratification of entire rows
        # (by design, here y[:, 0] uniquely determines the entire row of y)
        expected_ratio = np.mean(y[:, 0])
        assert_equal(expected_ratio, np.mean(y_train[:, 0]))
        assert_equal(expected_ratio, np.mean(y_test[:, 0])) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_split.py

示例7: test_evaluate_performance_too_many_entities_warning

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_evaluate_performance_too_many_entities_warning():
    X = load_yago3_10()
    model = TransE(batches_count=200, seed=0, epochs=1, k=5, eta=1, verbose=True)
    model.fit(X['train'])

    # no entity list declared
    with pytest.warns(UserWarning):
        evaluate_performance(X['test'][::100], model, verbose=True, corrupt_side='o')

    # with larger than threshold entity list
    with pytest.warns(UserWarning):
        # TOO_MANY_ENT_TH threshold is set to 50,000 entities. Using explicit value to comply with linting
        # and thus avoiding exporting unused global variable.
        entities_subset = np.union1d(np.unique(X["train"][:, 0]), np.unique(X["train"][:, 2]))[:50000]
        evaluate_performance(X['test'][::100], model, verbose=True, corrupt_side='o', entities_subset=entities_subset)

    # with small entity list (no exception expected)
    evaluate_performance(X['test'][::100], model, verbose=True, corrupt_side='o', entities_subset=entities_subset[:10])

    # with smaller dataset, no entity list declared (no exception expected)
    X_wn18rr = load_wn18rr()
    model_wn18 = TransE(batches_count=200, seed=0, epochs=1, k=5, eta=1, verbose=True)
    model_wn18.fit(X_wn18rr['train'])
    evaluate_performance(X_wn18rr['test'][::100], model_wn18, verbose=True, corrupt_side='o') 
開發者ID:Accenture,項目名稱:AmpliGraph,代碼行數:26,代碼來源:test_protocol.py

示例8: test_yago_3_10

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_yago_3_10():
    yago_3_10 = load_yago3_10()
    assert len(yago_3_10['train']) == 1079040 
    assert len(yago_3_10['valid']) == 5000 - 22
    assert len(yago_3_10['test']) == 5000 - 18

    # ent_train = np.union1d(np.unique(yago_3_10["train"][:,0]), np.unique(yago_3_10["train"][:,2]))
    # ent_valid = np.union1d(np.unique(yago_3_10["valid"][:,0]), np.unique(yago_3_10["valid"][:,2]))
    # ent_test = np.union1d(np.unique(yago_3_10["test"][:,0]), np.unique(yago_3_10["test"][:,2]))

    # assert len(set(ent_valid) - set(ent_train)) == 22
    # assert len (set(ent_test) - ((set(ent_valid) & set(ent_train)) | set(ent_train))) == 18

    # distinct_ent = np.union1d(np.union1d(ent_train, ent_valid), ent_test)
    # distinct_rel = np.union1d(np.union1d(np.unique(yago_3_10["train"][:,1]), np.unique(yago_3_10["train"][:,1])),
    #                           np.unique(yago_3_10["train"][:,1]))

    # assert len(distinct_ent) == 123182  
    # assert len(distinct_rel) == 37 
開發者ID:Accenture,項目名稱:AmpliGraph,代碼行數:21,代碼來源:test_datasets.py

示例9: test_wn18rr

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_wn18rr():
    wn18rr = load_wn18rr()

    ent_train = np.union1d(np.unique(wn18rr["train"][:, 0]), np.unique(wn18rr["train"][:, 2]))
    ent_valid = np.union1d(np.unique(wn18rr["valid"][:, 0]), np.unique(wn18rr["valid"][:, 2]))
    ent_test = np.union1d(np.unique(wn18rr["test"][:, 0]), np.unique(wn18rr["test"][:, 2]))
    distinct_ent = np.union1d(np.union1d(ent_train, ent_valid), ent_test)
    distinct_rel = np.union1d(np.union1d(np.unique(wn18rr["train"][:, 1]), np.unique(wn18rr["train"][:, 1])),
                              np.unique(wn18rr["train"][:, 1]))

    assert len(wn18rr['train']) == 86835

    # - 210 because 210 triples containing unseen entities are removed
    assert len(wn18rr['valid']) == 3034 - 210

    # - 210 because 210 triples containing unseen entities are removed
    assert len(wn18rr['test']) == 3134 - 210 
開發者ID:Accenture,項目名稱:AmpliGraph,代碼行數:19,代碼來源:test_datasets.py

示例10: compute_recall

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def compute_recall(self,n_points,nnn,sr):
        sample_indices=np.random.choice(self.numsamples,n_points)
        recalls=[]
        elapsed=[]
        numpredicted=[]
        for qidx in sample_indices:
            start=time.time()
            #preds=np.array([m.query_bins(qidx,sr) for m in self.models])
            predicted=self.firstmodel.query_bins(qidx,sr)#reduce(np.union1d,preds)
            if len(predicted)<nnn:
                raise ValueError('Not a good search radius')
            numpredicted.append(len(predicted))
            l1distances=np.array([np.sum((m.hashes[predicted,:]^m.hashes[qidx,:]),axis=1) for m in self.models])
            rankings=l1distances.mean(axis=0).argsort()
            #trusted_model=self.models[np.argmax([len(p) for p in preds])]
            #rankings=np.sum((trusted_model.hashes[predicted,:]^trusted_model.hashes[qidx,:]),axis=1).argsort()
            predicted=predicted[rankings][:nnn]
            elapsed.append(time.time()-start)
            trueNNs=self.firstmodel.true_nns(qidx,nnn)
            recalls.append(len(set(predicted)&set(trueNNs))/nnn)
        return [np.mean(recalls),np.std(recalls),np.mean(elapsed),np.std(elapsed),np.mean(numpredicted),np.std(numpredicted)] 
開發者ID:dataplayer12,項目名稱:Fly-LSH,代碼行數:23,代碼來源:lshutils.py

示例11: test_list_batch_source

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def test_list_batch_source(self):
        # Make sure that with enough epochs we sample everything.
        stream = RandomFixedSizeCrop(self.batch_stream, (5, 4),
                                     which_sources=('source2',))
        seen_indices = numpy.array([], dtype='uint8')
        for i in range(30):
            for batch in stream.get_epoch_iterator():
                for example in batch[1]:
                    assert example.shape == (2, 5, 4)
                    seen_indices = numpy.union1d(seen_indices,
                                                 example.flatten())
                assert len(batch[1]) in (1, 2)
            if self.source2_biggest == len(seen_indices):
                break
        else:
            assert False 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:18,代碼來源:test_image.py

示例12: uunion1d

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def uunion1d(arr1, arr2):
    """Find the union of two arrays.

    A wrapper around numpy.intersect1d that preserves units.  All input arrays
    must have the same units.  See the documentation of numpy.intersect1d for
    full details.

    Examples
    --------
    >>> from unyt import cm
    >>> A = [1, 2, 3]*cm
    >>> B = [2, 3, 4]*cm
    >>> uunion1d(A, B)
    unyt_array([1, 2, 3, 4], 'cm')

    """
    v = np.union1d(arr1, arr2)
    v = _validate_numpy_wrapper_units(v, [arr1, arr2])
    return v 
開發者ID:yt-project,項目名稱:unyt,代碼行數:21,代碼來源:array.py

示例13: transform_event

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def transform_event(self, event):

        for peak in event.peaks:
            # check that there is a position
            if not len(peak.reconstructed_positions):
                continue
            try:
                # Get x,y position from peak
                xy = peak.get_position_from_preferred_algorithm(self.config['xy_posrec_preference'])
            except ValueError:
                self.log.debug("Could not find any position from the chosen algorithms")
                continue
            try:
                peak.s2_saturation_correction *= saturation_correction(
                    peak=peak,
                    channels_in_pattern=self.config['channels_top'],
                    expected_pattern=self.s2_patterns.expected_pattern((xy.x, xy.y)),
                    confused_channels=np.union1d(peak.saturated_channels, self.zombie_pmts_s2),
                    log=self.log)
            except exceptions.CoordinateOutOfRangeException:
                self.log.debug("Expected light pattern at coordinates "
                               "(%f, %f) consists of only zeros!" % (xy.x, xy.y))

        return event 
開發者ID:XENON1T,項目名稱:pax,代碼行數:26,代碼來源:PeakAreaCorrections.py

示例14: intersect_sim

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def intersect_sim(array_1, array_2):
    """Calculate the simiarity of two arrays
    by using intersection / union
    """
    sim = float(np.intersect1d(array_1, array_2).size) / \
        float(np.union1d(array_1, array_2).size)
    return sim 
開發者ID:liuxianming,項目名稱:Caffe-Python-Data-Layer,代碼行數:9,代碼來源:util.py

示例15: get_fixed_nodes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import union1d [as 別名]
def get_fixed_nodes(self):
        # Return a list of fixed nodes for the problem
        dofs = np.arange(2 * (self.nelx + 1) * (self.nely + 1))
        fixed = np.union1d(dofs[0:2 * (self.nely + 1):2],
            np.array([2 * (self.nelx + 1) * (self.nely + 1) - 1]))
        return fixed 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:8,代碼來源:boundary_conditions.py


注:本文中的numpy.union1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。