本文整理匯總了Python中numpy.uintp方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.uintp方法的具體用法?Python numpy.uintp怎麽用?Python numpy.uintp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.uintp方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_same_kind_index_casting
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_same_kind_index_casting(self):
# Indexes should be cast with same-kind and not safe, even if that
# is somewhat unsafe. So test various different code paths.
index = np.arange(5)
u_index = index.astype(np.uintp)
arr = np.arange(10)
assert_array_equal(arr[index], arr[u_index])
arr[u_index] = np.arange(5)
assert_array_equal(arr, np.arange(10))
arr = np.arange(10).reshape(5, 2)
assert_array_equal(arr[index], arr[u_index])
arr[u_index] = np.arange(5)[:,None]
assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1))
arr = np.arange(25).reshape(5, 5)
assert_array_equal(arr[u_index, u_index], arr[index, index])
示例2: test_same_kind_index_casting
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_same_kind_index_casting(self):
# Indexes should be cast with same-kind and not safe, even if
# that is somewhat unsafe. So test various different code paths.
index = np.arange(5)
u_index = index.astype(np.uintp)
arr = np.arange(10)
assert_array_equal(arr[index], arr[u_index])
arr[u_index] = np.arange(5)
assert_array_equal(arr, np.arange(10))
arr = np.arange(10).reshape(5, 2)
assert_array_equal(arr[index], arr[u_index])
arr[u_index] = np.arange(5)[:,None]
assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1))
arr = np.arange(25).reshape(5, 5)
assert_array_equal(arr[u_index, u_index], arr[index, index])
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def __init__(self, filters, strides, pad_top, pad_left, bias, image_shape, input_names, output_name, output_shape):
"""
collects the information needed for the conv_handle_intermediate_relu_layer transformer and brings it into the required shape
Arguments
---------
filters : numpy.ndarray
the actual 4D filter of the convolutional layer
strides : numpy.ndarray
1D with to elements, stride in height and width direction
bias : numpy.ndarray
the bias of the layer
image_shape : numpy.ndarray
1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer
"""
self.image_shape = np.ascontiguousarray(image_shape, dtype=np.uintp)
self.filters = np.ascontiguousarray(filters, dtype=np.double)
self.strides = np.ascontiguousarray(strides, dtype=np.uintp)
self.bias = np.ascontiguousarray(bias, dtype=np.double)
self.out_size = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3])
self.pad_top = pad_top
self.pad_left = pad_left
add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
示例4: update_relu_expr_bounds
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def update_relu_expr_bounds(man, element, layerno, lower_bound_expr, upper_bound_expr, lbi, ubi):
for var in upper_bound_expr.keys():
uexpr = upper_bound_expr[var].expr
varsid = upper_bound_expr[var].varsid
bound = upper_bound_expr[var].bound
k = len(varsid)
varsid = np.ascontiguousarray(varsid, dtype=np.uintp)
for j in range(k):
nnz_u = 0
for l in range(k):
if uexpr[l+1] != 0:
nnz_u+=1
#if nnz_l > 1:
#lexpr = np.ascontiguousarray(lexpr, dtype=np.double)
#update_relu_lower_bound_for_neuron(man, element, layerno, varsid[j], lexpr, varsid, k)
if nnz_u > 1 and bound < 2*ubi[var]:
uexpr = np.ascontiguousarray(uexpr, dtype=np.double)
update_relu_upper_bound_for_neuron(man, element, layerno, varsid[j], uexpr, varsid, k)
示例5: _numpy2cells
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def _numpy2cells(cells):
if cells.ndim == 1:
offset = 0
n_cells = 0
while offset < cells.size:
offset += cells[offset] + 1
n_cells += 1
vtk_cells = cells
else:
n_cells, n_points_cell = cells.shape
vtk_cells = np.empty((n_cells, n_points_cell + 1),
dtype=np.uintp)
vtk_cells[:, 0] = n_points_cell
vtk_cells[:, 1:] = cells
vtk_cells = vtk_cells.ravel()
# cells = dsa.numpyTovtkDataArray(vtk_cells, array_type=VTK_ID_TYPE)
ca = BSCellArray()
ca.SetCells(n_cells, vtk_cells)
return ca.VTKObject
示例6: test_round_trip
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_round_trip():
scaling_type = np.float32
rng = np.random.RandomState(20111121)
N = 10000
sd_10s = range(-20, 51, 5)
iuint_types = np.sctypes['int'] + np.sctypes['uint']
# Remove intp types, which cannot be set into nifti header datatype
iuint_types.remove(np.intp)
iuint_types.remove(np.uintp)
f_types = [np.float32, np.float64]
# Expanding standard deviations
for i, sd_10 in enumerate(sd_10s):
sd = 10.0**sd_10
V_in = rng.normal(0, sd, size=(N,1))
for j, in_type in enumerate(f_types):
for k, out_type in enumerate(iuint_types):
check_arr(sd_10, V_in, in_type, out_type, scaling_type)
# Spread integers across range
for i, sd in enumerate(np.linspace(0.05, 0.5, 5)):
for j, in_type in enumerate(iuint_types):
info = np.iinfo(in_type)
mn, mx = info.min, info.max
type_range = mx - mn
center = type_range / 2.0 + mn
# float(sd) because type_range can be type 'long'
width = type_range * float(sd)
V_in = rng.normal(center, width, size=(N,1))
for k, out_type in enumerate(iuint_types):
check_arr(sd, V_in, in_type, out_type, scaling_type)
示例7: test_equivalent_dtype_hashing
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_equivalent_dtype_hashing(self):
# Make sure equivalent dtypes with different type num hash equal
uintp = np.dtype(np.uintp)
if uintp.itemsize == 4:
left = uintp
right = np.dtype(np.uint32)
else:
left = uintp
right = np.dtype(np.ulonglong)
assert_(left == right)
assert_(hash(left) == hash(right))
示例8: test_void_pointer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_void_pointer(self):
self.check(ctypes.c_void_p, np.uintp)
示例9: get_children
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def get_children(self, segment):
'''Return all segments which have the given segment as a parent'''
if segment.n_iter == self.current_iteration: return []
# Examine the segment index from the following iteration to see who has this segment
# as a parent. We don't need to worry about the number of parents each segment
# has, since each has at least one, and indexing on the offset into the parents array
# gives the primary parent ID
with self.lock:
iter_group = self.get_iter_group(segment.n_iter+1)
seg_index = iter_group['seg_index'][...]
# This is one of the slowest pieces of code I've ever written...
#seg_index = iter_group['seg_index'][...]
#seg_ids = [seg_id for (seg_id,row) in enumerate(seg_index)
# if all_parent_ids[row['parents_offset']] == segment.seg_id]
#return self.get_segments_by_id(segment.n_iter+1, seg_ids)
if self.we_h5file_version < 5:
parents = iter_group['parents'][seg_index['parent_offsets']]
else:
parents = seg_index['parent_id']
all_seg_ids = numpy.arange(seg_index.len(), dtype=numpy.uintp)
seg_ids = all_seg_ids[parents == segment.seg_id]
# the above will return a scalar if only one is found, so convert
# to a list if necessary
try:
len(seg_ids)
except TypeError:
seg_ids = [seg_ids]
return self.get_segments(segment.n_iter+1, seg_ids)
# The following are dictated by the SimManager interface
示例10: get_xpp
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def get_xpp(self):
"""
helper function to get pointers to the rows of self.weights.
Return
------
output : numpy.ndarray
pointers to the rows of the matrix
"""
return (self.weights.__array_interface__['data'][0]+ np.arange(self.weights.shape[0])*self.weights.strides[0]).astype(np.uintp)
示例11: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def __init__(self, image_shape, filters, strides, pad_top, pad_left, input_names, output_name, output_shape):
"""
Arguments
---------
image_shape : numpy.ndarray
of shape [height, width, channels]
filters : numpy.ndarray
the 4D array with the filter weights
strides : numpy.ndarray
of shape [height, width]
padding : str
type of padding, either 'VALID' or 'SAME'
input_names : iterable
iterable with the name of the second addend
output_name : str
name of this node's output
output_shape : iterable
iterable of ints with the shape of the output of this node
"""
add_input_output_information(self, input_names, output_name, output_shape)
self.image_size = np.ascontiguousarray(image_shape, dtype=np.uintp)
self.filters = np.ascontiguousarray(filters, dtype=np.double)
self.strides = np.ascontiguousarray(strides, dtype=np.uintp)
self.output_shape = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3])
self.pad_top = pad_top
self.pad_left = pad_left
示例12: test_map_coordinates_dts
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uintp [as 別名]
def test_map_coordinates_dts():
# check that ndimage accepts different data types for interpolation
data = np.array([[4, 1, 3, 2],
[7, 6, 8, 5],
[3, 5, 3, 6]])
shifted_data = np.array([[0, 0, 0, 0],
[0, 4, 1, 3],
[0, 7, 6, 8]])
idx = np.indices(data.shape)
dts = (np.uint8, np.uint16, np.uint32, np.uint64,
np.int8, np.int16, np.int32, np.int64,
np.intp, np.uintp, np.float32, np.float64)
for order in range(0, 6):
for data_dt in dts:
these_data = data.astype(data_dt)
for coord_dt in dts:
# affine mapping
mat = np.eye(2, dtype=coord_dt)
off = np.zeros((2,), dtype=coord_dt)
out = ndimage.affine_transform(these_data, mat, off)
assert_array_almost_equal(these_data, out)
# map coordinates
coords_m1 = idx.astype(coord_dt) - 1
coords_p10 = idx.astype(coord_dt) + 10
out = ndimage.map_coordinates(these_data, coords_m1, order=order)
assert_array_almost_equal(out, shifted_data)
# check constant fill works
out = ndimage.map_coordinates(these_data, coords_p10, order=order)
assert_array_almost_equal(out, np.zeros((3,4)))
# check shift and zoom
out = ndimage.shift(these_data, 1)
assert_array_almost_equal(out, shifted_data)
out = ndimage.zoom(these_data, 1)
assert_array_almost_equal(these_data, out)