本文整理匯總了Python中numpy.uint64方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.uint64方法的具體用法?Python numpy.uint64怎麽用?Python numpy.uint64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.uint64方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: argunique_ctypes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def argunique_ctypes(strs):
nstrs, nset = strs.shape
sort_idx = numpy.empty(nstrs, dtype=numpy.uint64)
strs = numpy.asarray(strs, order='C')
sort_idx = numpy.asarray(sort_idx, order='C')
nstrs_ = numpy.array([nstrs])
libhci.argunique(strs.ctypes.data_as(ctypes.c_void_p),
sort_idx.ctypes.data_as(ctypes.c_void_p),
nstrs_.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nset))
sort_idx = sort_idx[:nstrs_[0]]
return sort_idx.tolist()
示例2: test_able_int_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_able_int_type():
# The integer type cabable of containing values
for vals, exp_out in (
([0, 1], np.uint8),
([0, 255], np.uint8),
([-1, 1], np.int8),
([0, 256], np.uint16),
([-1, 128], np.int16),
([0.1, 1], None),
([0, 2**16], np.uint32),
([-1, 2**15], np.int32),
([0, 2**32], np.uint64),
([-1, 2**31], np.int64),
([-1, 2**64-1], None),
([0, 2**64-1], np.uint64),
([0, 2**64], None)):
assert_equal(able_int_type(vals), exp_out)
示例3: testChunkReadPoints2D
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def testChunkReadPoints2D(self):
chunk_id = "c-00de6a9c-6aff5c35-15d5-3864dd-0740f8_3_4"
chunk_layout = (100,100)
chunk_arr = np.zeros((100,100))
chunk_arr[:,12] = 69
chunk_arr[12,:] = 96
point_arr = np.array([[312,498],[312,412],[355,412],[398,497]], dtype=np.uint64)
arr = chunkReadPoints(chunk_id=chunk_id, chunk_layout=chunk_layout, chunk_arr=chunk_arr, point_arr=point_arr)
self.assertEqual(arr.tolist(), [96,96,69,0])
point_arr = np.array([[312,498],[312,412],[355,412],[398,397]], dtype=np.uint64)
try:
chunkReadPoints(chunk_id=chunk_id, chunk_layout=chunk_layout, chunk_arr=chunk_arr, point_arr=point_arr)
self.assertTrue(False) # expected exception
except IndexError:
pass # expected
示例4: check
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def check(self, stream):
"""Check that the CRC at the end of athe stream is correct.
Parameters
----------
stream : int or array of unsigned int
For an integer, the value is the stream to check the CRC for.
For arrays, the dimension is treated as the index into the bits.
A single stream would thus be of type `bool`. Unsigned integers
represent multiple streams. E.g., for a 64-track Mark 4 header,
the stream would be an array of ``np.uint64`` words.
Returns
-------
ok : bool
`True` if the calculated CRC is all zero (which should be the
case if the CRC at the end of the stream is correct).
"""
return self._crc(stream) == 0
示例5: reorder64_Ft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def reorder64_Ft(x):
"""Reorder 64-track bits to bring signs & magnitudes together.
Special version for the Ft station, which has unusual settings.
"""
return (((x & 0xFFFFFAAFFFFFFAAF))
| ((x & 0x0000050000000500) >> 4)
| ((x & 0x0000005000000050) << 4))
# Check on 2015-JUL-12: C code: 738811025863578102 -> 738829572664316278
# 118, 209, 53, 244, 148, 217, 64, 10
# reorder64(np.array([738811025863578102], dtype=np.uint64))
# # array([738829572664316278], dtype=uint64)
# reorder64(np.array([738811025863578102], dtype=np.uint64)).view(np.uint8)
# # array([118, 209, 53, 244, 148, 217, 64, 10], dtype=uint8)
# decode_2bit_64track_fanout4(
# np.array([738811025863578102], dtype=np.int64)).astype(int).T
# -1 1 3 1 array([[-1, 1, 3, 1],
# 1 1 3 -3 [ 1, 1, 3, -3],
# 1 -3 1 3 [ 1, -3, 1, 3],
# -3 1 3 3 [-3, 1, 3, 3],
# -3 1 1 -1 [-3, 1, 1, -1],
# -3 -3 -3 1 [-3, -3, -3, 1],
# 1 -1 1 3 [ 1, -1, 1, 3],
# -1 -1 -3 -3 [-1, -1, -3, -3]])
示例6: encode_16chan_2bit_fanout2_ft
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def encode_16chan_2bit_fanout2_ft(values):
"""Encode payload for 16 channels using 2 bits, fan-out 2 (64 tracks)."""
# words encode 32 values (above) in order ch&0x8, ch&0x3, sample, ch&0x4
# First reshape goes to time, sample, ch&0x8, ch&0x4, ch&0x3,
# transpose makes this time, ch&0x8, ch&0x3, sample, ch&0x4.
# second reshape future bytes, sample+ch&0x4.
values = (values.reshape(-1, 2, 2, 2, 4).transpose(0, 2, 4, 1, 3)
.reshape(-1, 4))
bitvalues = encode_2bit_base(values)
# values are -3, -1, +1, 3 -> 00, 01, 10, 11;
# get first bit (sign) as 1, second bit (magnitude) as 16
reorder_bits = np.array([0, 16, 1, 17], dtype=np.uint8)
reorder_bits.take(bitvalues, out=bitvalues)
bitvalues <<= np.array([0, 1, 2, 3], dtype=np.uint8)
out = np.bitwise_or.reduce(bitvalues, axis=-1).ravel().view(np.uint64)
return reorder64_Ft(out).view('<u8')
示例7: squeeze_bits
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def squeeze_bits(arr: numpy.ndarray) -> numpy.ndarray:
"""Return a copy of an integer numpy array with the minimum bitness."""
assert arr.dtype.kind in ("i", "u")
if arr.size == 0:
return arr
if arr.dtype.kind == "i":
assert arr.min() >= 0
mlbl = int(arr.max()).bit_length()
if mlbl <= 8:
dtype = numpy.uint8
elif mlbl <= 16:
dtype = numpy.uint16
elif mlbl <= 32:
dtype = numpy.uint32
else:
dtype = numpy.uint64
return arr.astype(dtype)
示例8: test_int64_uint64_corner_case
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_int64_uint64_corner_case(self):
# When stored in Numpy arrays, `lbnd` is casted
# as np.int64, and `ubnd` is casted as np.uint64.
# Checking whether `lbnd` >= `ubnd` used to be
# done solely via direct comparison, which is incorrect
# because when Numpy tries to compare both numbers,
# it casts both to np.float64 because there is
# no integer superset of np.int64 and np.uint64. However,
# `ubnd` is too large to be represented in np.float64,
# causing it be round down to np.iinfo(np.int64).max,
# leading to a ValueError because `lbnd` now equals
# the new `ubnd`.
dt = np.int64
tgt = np.iinfo(np.int64).max
lbnd = np.int64(np.iinfo(np.int64).max)
ubnd = np.uint64(np.iinfo(np.int64).max + 1)
# None of these function calls should
# generate a ValueError now.
actual = np.random.randint(lbnd, ubnd, dtype=dt)
assert_equal(actual, tgt)
示例9: test_constructor
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_constructor(self):
idx = UInt64Index([1, 2, 3])
res = Index([1, 2, 3], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2**63])
res = Index([1, 2**63], dtype=np.uint64)
tm.assert_index_equal(res, idx)
idx = UInt64Index([1, 2**63])
res = Index([1, 2**63])
tm.assert_index_equal(res, idx)
idx = Index([-1, 2**63], dtype=object)
res = Index(np.array([-1, 2**63], dtype=object))
tm.assert_index_equal(res, idx)
示例10: test_sum_uint64_overflow
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_sum_uint64_overflow():
# see gh-14758
# Convert to uint64 and don't overflow
df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], dtype=object)
df = df + 9223372036854775807
index = pd.Index([9223372036854775808,
9223372036854775810,
9223372036854775812],
dtype=np.uint64)
expected = pd.DataFrame({1: [9223372036854775809,
9223372036854775811,
9223372036854775813]},
index=index)
expected.index.name = 0
result = df.groupby(0).sum()
tm.assert_frame_equal(result, expected)
示例11: test_setitem
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_setitem(self):
df = self.df
idx = self.idx
# setitem
df['C'] = idx
assert_series_equal(df['C'], Series(idx, name='C'))
df['D'] = 'foo'
df['D'] = idx
assert_series_equal(df['D'], Series(idx, name='D'))
del df['D']
# With NaN: because uint64 has no NaN element,
# the column should be cast to object.
df2 = df.copy()
df2.iloc[1, 1] = pd.NaT
df2.iloc[1, 2] = pd.NaT
result = df2['B']
assert_series_equal(notna(result), Series(
[True, False, True], name='B'))
assert_series_equal(df2.dtypes, Series([np.dtype('uint64'),
np.dtype('O'), np.dtype('O')],
index=['A', 'B', 'C']))
示例12: test_constructor_overflow_int64
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_constructor_overflow_int64(self):
# see gh-14881
values = np.array([2 ** 64 - i for i in range(1, 10)],
dtype=np.uint64)
result = DataFrame({'a': values})
assert result['a'].dtype == np.uint64
# see gh-2355
data_scores = [(6311132704823138710, 273), (2685045978526272070, 23),
(8921811264899370420, 45),
(long(17019687244989530680), 270),
(long(9930107427299601010), 273)]
dtype = [('uid', 'u8'), ('score', 'u8')]
data = np.zeros((len(data_scores),), dtype=dtype)
data[:] = data_scores
df_crawls = DataFrame(data)
assert df_crawls['uid'].dtype == np.uint64
示例13: test_coerce_uint64_conflict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_coerce_uint64_conflict(self):
# see gh-17007 and gh-17125
#
# Still returns float despite the uint64-nan conflict,
# which would normally force the casting to object.
df = pd.DataFrame({"a": [200, 300, "", "NaN", 30000000000000000000]})
expected = pd.Series([200, 300, np.nan, np.nan,
30000000000000000000], dtype=float, name="a")
result = to_numeric(df["a"], errors="coerce")
tm.assert_series_equal(result, expected)
s = pd.Series(["12345678901234567890", "1234567890", "ITEM"])
expected = pd.Series([12345678901234567890,
1234567890, np.nan], dtype=float)
result = to_numeric(s, errors="coerce")
tm.assert_series_equal(result, expected)
# For completeness, check against "ignore" and "raise"
result = to_numeric(s, errors="ignore")
tm.assert_series_equal(result, s)
msg = "Unable to parse string"
with pytest.raises(ValueError, match=msg):
to_numeric(s, errors="raise")
示例14: test_hash_collisions
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_hash_collisions():
# Hash collisions are bad.
#
# https://github.com/pandas-dev/pandas/issues/14711#issuecomment-264885726
hashes = ["Ingrid-9Z9fKIZmkO7i7Cn51Li34pJm44fgX6DYGBNj3VPlOH50m7HnBlPxfIwFMrcNJNMP6PSgLmwWnInciMWrCSAlLEvt7JkJl4IxiMrVbXSa8ZQoVaq5xoQPjltuJEfwdNlO6jo8qRRHvD8sBEBMQASrRa6TsdaPTPCBo3nwIBpE7YzzmyH0vMBhjQZLx1aCT7faSEx7PgFxQhHdKFWROcysamgy9iVj8DO2Fmwg1NNl93rIAqC3mdqfrCxrzfvIY8aJdzin2cHVzy3QUJxZgHvtUtOLxoqnUHsYbNTeq0xcLXpTZEZCxD4PGubIuCNf32c33M7HFsnjWSEjE2yVdWKhmSVodyF8hFYVmhYnMCztQnJrt3O8ZvVRXd5IKwlLexiSp4h888w7SzAIcKgc3g5XQJf6MlSMftDXm9lIsE1mJNiJEv6uY6pgvC3fUPhatlR5JPpVAHNSbSEE73MBzJrhCAbOLXQumyOXigZuPoME7QgJcBalliQol7YZ9", # noqa
"Tim-b9MddTxOWW2AT1Py6vtVbZwGAmYCjbp89p8mxsiFoVX4FyDOF3wFiAkyQTUgwg9sVqVYOZo09Dh1AzhFHbgij52ylF0SEwgzjzHH8TGY8Lypart4p4onnDoDvVMBa0kdthVGKl6K0BDVGzyOXPXKpmnMF1H6rJzqHJ0HywfwS4XYpVwlAkoeNsiicHkJUFdUAhG229INzvIAiJuAHeJDUoyO4DCBqtoZ5TDend6TK7Y914yHlfH3g1WZu5LksKv68VQHJriWFYusW5e6ZZ6dKaMjTwEGuRgdT66iU5nqWTHRH8WSzpXoCFwGcTOwyuqPSe0fTe21DVtJn1FKj9F9nEnR9xOvJUO7E0piCIF4Ad9yAIDY4DBimpsTfKXCu1vdHpKYerzbndfuFe5AhfMduLYZJi5iAw8qKSwR5h86ttXV0Mc0QmXz8dsRvDgxjXSmupPxBggdlqUlC828hXiTPD7am0yETBV0F3bEtvPiNJfremszcV8NcqAoARMe"] # noqa
# These should be different.
result1 = hash_array(np.asarray(hashes[0:1], dtype=object), "utf8")
expected1 = np.array([14963968704024874985], dtype=np.uint64)
tm.assert_numpy_array_equal(result1, expected1)
result2 = hash_array(np.asarray(hashes[1:2], dtype=object), "utf8")
expected2 = np.array([16428432627716348016], dtype=np.uint64)
tm.assert_numpy_array_equal(result2, expected2)
result = hash_array(np.asarray(hashes, dtype=object), "utf8")
tm.assert_numpy_array_equal(result, np.concatenate([expected1,
expected2], axis=0))
示例15: test_maybe_convert_objects_uint64
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint64 [as 別名]
def test_maybe_convert_objects_uint64(self):
# see gh-4471
arr = np.array([2**63], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
# NumPy bug: can't compare uint64 to int64, as that
# results in both casting to float64, so we should
# make sure that this function is robust against it
arr = np.array([np.uint64(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2, -1], dtype=object)
exp = np.array([2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
arr = np.array([2**63, -1], dtype=object)
exp = np.array([2**63, -1], dtype=object)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)