當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.uint16方法代碼示例

本文整理匯總了Python中numpy.uint16方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.uint16方法的具體用法?Python numpy.uint16怎麽用?Python numpy.uint16使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.uint16方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: execute

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def execute(self):
        img_h = self.img.shape[0]
        img_w = self.img.shape[1]
        img_c = self.img.shape[2]
        gc_img = np.empty((img_h, img_w, img_c), np.uint16)
        for y in range(self.img.shape[0]):
            for x in range(self.img.shape[1]):
                if self.mode == 'rgb':
                    gc_img[y, x, 0] = self.lut[self.img[y, x, 0]]
                    gc_img[y, x, 1] = self.lut[self.img[y, x, 1]]
                    gc_img[y, x, 2] = self.lut[self.img[y, x, 2]]
                    gc_img[y, x, :] = gc_img[y, x, :] / 4
                elif self.mode == 'yuv':
                    gc_img[y, x, 0] = self.lut[0][self.img[y, x, 0]]
                    gc_img[y, x, 1] = self.lut[1][self.img[y, x, 1]]
                    gc_img[y, x, 2] = self.lut[1][self.img[y, x, 2]]
        self.img = gc_img
        return self.img 
開發者ID:cruxopen,項目名稱:openISP,代碼行數:20,代碼來源:gac.py

示例2: execute

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def execute(self):
        img_pad = self.padding()
        img_pad = img_pad.astype(np.uint16)
        raw_h = self.img.shape[0]
        raw_w = self.img.shape[1]
        nlm_img = np.empty((raw_h, raw_w), np.uint16)
        kernel = np.ones((2*self.ds+1, 2*self.ds+1)) / pow(2*self.ds+1, 2)
        for y in range(img_pad.shape[0] - 2 * self.Ds):
            for x in range(img_pad.shape[1] - 2 * self.Ds):
                center_y = y + self.Ds
                center_x = x + self.Ds
                sweight, average, wmax = self.calWeights(img_pad, kernel, center_y, center_x)
                average = average + wmax * img_pad[center_y, center_x]
                sweight = sweight + wmax
                nlm_img[y,x] = average / sweight
        self.img = nlm_img
        return self.clipping() 
開發者ID:cruxopen,項目名稱:openISP,代碼行數:19,代碼來源:nlm.py

示例3: execute

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def execute(self):
        img_pad = self.padding()
        raw_h = self.img.shape[0]
        raw_w = self.img.shape[1]
        aaf_img = np.empty((raw_h, raw_w), np.uint16)
        for y in range(img_pad.shape[0] - 4):
            for x in range(img_pad.shape[1] - 4):
                p0 = img_pad[y + 2, x + 2]
                p1 = img_pad[y, x]
                p2 = img_pad[y, x + 2]
                p3 = img_pad[y, x + 4]
                p4 = img_pad[y + 2, x]
                p5 = img_pad[y + 2, x + 4]
                p6 = img_pad[y + 4, x]
                p7 = img_pad[y + 4, x + 2]
                p8 = img_pad[y + 4, x + 4]
                aaf_img[y, x] = (p0 * 8 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8) / 16
        self.img = aaf_img
        return self.img 
開發者ID:cruxopen,項目名稱:openISP,代碼行數:21,代碼來源:aaf.py

示例4: test_subheader

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_subheader(self):
        assert_equal(self.subhdr.get_shape() , (10,10,3))
        assert_equal(self.subhdr.get_nframes() , 1)
        assert_equal(self.subhdr.get_nframes(),
                     len(self.subhdr.subheaders))
        assert_equal(self.subhdr._check_affines(), True)
        assert_array_almost_equal(np.diag(self.subhdr.get_frame_affine()),
                                  np.array([ 2.20241979, 2.20241979, 3.125,  1.]))
        assert_equal(self.subhdr.get_zooms()[0], 2.20241978764534)
        assert_equal(self.subhdr.get_zooms()[2], 3.125)
        assert_equal(self.subhdr._get_data_dtype(0),np.uint16)
        #assert_equal(self.subhdr._get_frame_offset(), 1024)
        assert_equal(self.subhdr._get_frame_offset(), 1536)
        dat = self.subhdr.raw_data_from_fileobj()
        assert_equal(dat.shape, self.subhdr.get_shape())
        scale_factor = self.subhdr.subheaders[0]['scale_factor']
        assert_equal(self.subhdr.subheaders[0]['scale_factor'].item(),1.0)
        ecat_calib_factor = self.hdr['ecat_calibration_factor']
        assert_equal(ecat_calib_factor, 25007614.0) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:21,代碼來源:test_ecat.py

示例5: test_able_int_type

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_able_int_type():
    # The integer type cabable of containing values
    for vals, exp_out in (
        ([0, 1], np.uint8),
        ([0, 255], np.uint8),
        ([-1, 1], np.int8),
        ([0, 256], np.uint16),
        ([-1, 128], np.int16),
        ([0.1, 1], None),
        ([0, 2**16], np.uint32),
        ([-1, 2**15], np.int32),
        ([0, 2**32], np.uint64),
        ([-1, 2**31], np.int64),
        ([-1, 2**64-1], None),
        ([0, 2**64-1], np.uint64),
        ([0, 2**64], None)):
        assert_equal(able_int_type(vals), exp_out) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:19,代碼來源:test_casting.py

示例6: test_can_cast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_can_cast():
    tests = ((np.float32, np.float32, True, True, True),
             (np.float64, np.float32, True, True, True),
             (np.complex128, np.float32, False, False, False),
             (np.float32, np.complex128, True, True, True),
             (np.float32, np.uint8, False, True, True),
             (np.uint32, np.complex128, True, True, True),
             (np.int64, np.float32, True, True, True),
             (np.complex128, np.int16, False, False, False),
             (np.float32, np.int16, False, True, True),
             (np.uint8, np.int16, True, True, True),
             (np.uint16, np.int16, False, True, True),
             (np.int16, np.uint16, False, False, True),
             (np.int8, np.uint16, False, False, True),
             (np.uint16, np.uint8, False, True, True),
             )
    for intype, outtype, def_res, scale_res, all_res in tests:
        assert_equal(def_res, can_cast(intype, outtype))
        assert_equal(scale_res, can_cast(intype, outtype, False, True))
        assert_equal(all_res, can_cast(intype, outtype, True, True)) 
開發者ID:ME-ICA,項目名稱:me-ica,代碼行數:22,代碼來源:test_utils.py

示例7: apply_using_lut

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def apply_using_lut(input_band, transformation):
    '''Applies a linear transformation to an array using a look up table.
    This creates a uint16 array as the output and clips the output band
    to the range of a uint16.

    :param array input_band: A 2D array representing the image data of the
        a single band
    :param LinearTransformation transformation: A LinearTransformation
        (gain and offset)

    :returns: A 2D array of of the input_band with the transformation applied
    '''
    logging.info('Normalize: Applying linear transformation to band (uint16)')

    def _apply_lut(band, lut):
        '''Changes band intensity values based on intensity look up table (lut)
        '''
        if lut.dtype != band.dtype:
            raise Exception(
                'Band ({}) and lut ({}) must be the same data type.').format(
                band.dtype, lut.dtype)
        return numpy.take(lut, band, mode='clip')

    lut = _linear_transformation_to_lut(transformation)
    return _apply_lut(input_band, lut) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:27,代碼來源:normalize.py

示例8: _uniform_weight_alpha

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def _uniform_weight_alpha(sum_masked_arrays, output_datatype):
    '''Calculates the cumulative mask of a list of masked array

    Input:
        sum_masked_arrays (list of numpy masked arrays): The list of
            masked arrays to find the cumulative mask of, each element
            represents one band.
            (sums_masked_array.mask has a 1 for a no data pixel and
            a 0 otherwise)
        output_datatype (numpy datatype): The output datatype

    Output:
        output_alpha (numpy uint16 array): The output mask
            (0 for a no data pixel, uint16 max value otherwise)
    '''

    output_alpha = numpy.ones(sum_masked_arrays[0].shape)
    for band_sum_masked_array in sum_masked_arrays:
        output_alpha[numpy.nonzero(band_sum_masked_array.mask == 1)] = 0

    output_alpha = output_alpha.astype(output_datatype) * \
        numpy.iinfo(output_datatype).max

    return output_alpha 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:26,代碼來源:time_stack.py

示例9: test_save_with_compress

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_save_with_compress(self):
        output_file = 'test_save_with_compress.tif'
        test_band = numpy.array([[5, 2, 2], [1, 6, 8]], dtype=numpy.uint16)
        test_alpha = numpy.array([[0, 0, 0], [1, 1, 1]], dtype=numpy.bool)
        test_gimage = gimage.GImage([test_band, test_band, test_band],
                                    test_alpha, self.metadata)
        gimage.save(test_gimage, output_file, compress=True)

        result_gimg = gimage.load(output_file)
        numpy.testing.assert_array_equal(result_gimg.bands[0], test_band)
        numpy.testing.assert_array_equal(result_gimg.bands[1], test_band)
        numpy.testing.assert_array_equal(result_gimg.bands[2], test_band)
        numpy.testing.assert_array_equal(result_gimg.alpha, test_alpha)
        self.assertEqual(result_gimg.metadata, self.metadata)

        os.unlink(output_file) 
開發者ID:planetlabs,項目名稱:radiometric_normalization,代碼行數:18,代碼來源:gimage_tests.py

示例10: format_time

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def format_time(running_time):
    """Format time in seconds as hours:minutes:seconds.
    
    PARAMETERS
    ----------
    running_time : float
        Time in seconds.
    
    RETURNS
    ----------
    running_time : str
        The time formatted as hours:minutes:seconds.
    """
    hrs = np.uint16(np.floor(running_time/(60.**2)))
    mts = np.uint16(np.floor(running_time/60.-hrs*60))
    sec = np.uint16(np.round(running_time-hrs*60.**2-mts*60.))

    return "{:02d}:{:02d}:{:02d}".format(hrs,mts,sec) 
開發者ID:simnibs,項目名稱:simnibs,代碼行數:20,代碼來源:hmutils.py

示例11: squeeze_bits

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def squeeze_bits(arr: numpy.ndarray) -> numpy.ndarray:
    """Return a copy of an integer numpy array with the minimum bitness."""
    assert arr.dtype.kind in ("i", "u")
    if arr.size == 0:
        return arr
    if arr.dtype.kind == "i":
        assert arr.min() >= 0
    mlbl = int(arr.max()).bit_length()
    if mlbl <= 8:
        dtype = numpy.uint8
    elif mlbl <= 16:
        dtype = numpy.uint16
    elif mlbl <= 32:
        dtype = numpy.uint32
    else:
        dtype = numpy.uint64
    return arr.astype(dtype) 
開發者ID:src-d,項目名稱:modelforge,代碼行數:19,代碼來源:model.py

示例12: group_years

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def group_years(years, interval=3):
    """ Return integers representing sequential groupings of years

    Note: years specified must be sorted

    Args:
        years (np.ndarray): the year corresponding to each EVI value
        interval (int, optional): number of years to group together
            (default: 3)

    Returns:
        np.ndarray: integers representing sequential year groupings

    """
    n_groups = math.ceil((years.max() - years.min()) / interval)
    if n_groups <= 1:
        return np.zeros_like(years, dtype=np.uint16)
    splits = np.array_split(np.arange(years.min(), years.max() + 1), n_groups)

    groups = np.zeros_like(years, dtype=np.uint16)
    for i, s in enumerate(splits):
        groups[np.in1d(years, s)] = i

    return groups 
開發者ID:ceholden,項目名稱:yatsm,代碼行數:26,代碼來源:longtermmean.py

示例13: ordinal2yeardoy

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def ordinal2yeardoy(ordinal):
    """ Convert ordinal dates to two arrays of year and doy

    Args:
        ordinal (np.ndarray): ordinal dates

    Returns:
        np.ndarray: nobs x 2 np.ndarray containing the year and DOY for each
            ordinal date

    """
    _date = [dt.fromordinal(_d) for _d in ordinal]
    yeardoy = np.empty((ordinal.size, 2), dtype=np.uint16)
    yeardoy[:, 0] = np.array([int(_d.strftime('%Y')) for _d in _date])
    yeardoy[:, 1] = np.array([int(_d.strftime('%j')) for _d in _date])

    return yeardoy 
開發者ID:ceholden,項目名稱:yatsm,代碼行數:19,代碼來源:longtermmean.py

示例14: test_padded_union

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_padded_union(self):
        dt = np.dtype(dict(
            names=['a', 'b'],
            offsets=[0, 0],
            formats=[np.uint16, np.uint32],
            itemsize=5,
        ))

        ct = np.ctypeslib.as_ctypes_type(dt)
        assert_(issubclass(ct, ctypes.Union))
        assert_equal(ctypes.sizeof(ct), dt.itemsize)
        assert_equal(ct._fields_, [
            ('a', ctypes.c_uint16),
            ('b', ctypes.c_uint32),
            ('', ctypes.c_char * 5),  # padding
        ]) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:18,代碼來源:test_ctypeslib.py

示例15: test_basic

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint16 [as 別名]
def test_basic(self):
        ba = [1, 2, 10, 11, 6, 5, 4]
        ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
        for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32,
                      np.uint32, np.float32, np.float64, np.complex64,
                      np.complex128]:
            a = np.array(ba, ctype)
            a2 = np.array(ba2, ctype)

            tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype)
            assert_array_equal(np.cumsum(a, axis=0), tgt)

            tgt = np.array(
                [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype)
            assert_array_equal(np.cumsum(a2, axis=0), tgt)

            tgt = np.array(
                [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype)
            assert_array_equal(np.cumsum(a2, axis=1), tgt) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:21,代碼來源:test_function_base.py


注:本文中的numpy.uint16方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。