本文整理匯總了Python中numpy.uint方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.uint方法的具體用法?Python numpy.uint怎麽用?Python numpy.uint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.uint方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_scaling_in_abstract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def test_scaling_in_abstract():
# Confirm that, for all ints and uints as input, and all possible outputs,
# for any simple way of doing the calculation, the result is near enough
for category0, category1 in (('int', 'int'),
('uint', 'int'),
):
for in_type in np.sctypes[category0]:
for out_type in np.sctypes[category1]:
check_int_a2f(in_type, out_type)
# Converting floats to integer
for category0, category1 in (('float', 'int'),
('float', 'uint'),
('complex', 'int'),
('complex', 'uint'),
):
for in_type in np.sctypes[category0]:
for out_type in np.sctypes[category1]:
check_int_a2f(in_type, out_type)
示例2: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError:
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)
示例3: itemsAt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def itemsAt(self, region=None):
"""
Return a list of the items displayed in the region (x, y, w, h)
relative to the widget.
"""
region = (region[0], self.height()-(region[1]+region[3]), region[2], region[3])
#buf = np.zeros(100000, dtype=np.uint)
buf = glSelectBuffer(100000)
try:
glRenderMode(GL_SELECT)
glInitNames()
glPushName(0)
self._itemNames = {}
self.paintGL(region=region, useItemNames=True)
finally:
hits = glRenderMode(GL_RENDER)
items = [(h.near, h.names[0]) for h in hits]
items.sort(key=lambda i: i[0])
return [self._itemNames[i[1]] for i in items]
示例4: _unsigned_subtract
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def _unsigned_subtract(a, b):
"""
Subtract two values where a >= b, and produce an unsigned result
This is needed when finding the difference between the upper and lower
bound of an int16 histogram
"""
# coerce to a single type
signed_to_unsigned = {
np.byte: np.ubyte,
np.short: np.ushort,
np.intc: np.uintc,
np.int_: np.uint,
np.longlong: np.ulonglong
}
dt = np.result_type(a, b)
try:
dt = signed_to_unsigned[dt.type]
except KeyError: # pragma: no cover
return np.subtract(a, b, dtype=dt)
else:
# we know the inputs are integers, and we are deliberately casting
# signed to unsigned
return np.subtract(a, b, casting='unsafe', dtype=dt)
示例5: savetxt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def savetxt(filename, ndarray):
dir = os.path.dirname(filename)
if not os.path.exists(dir):
os.makedirs(dir)
if not os.path.isfile(filename):
with open(filename, 'w') as f:
labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
for row in ndarray:
row_str = row.astype(str)
label_str = labels[row[-1]]
feature_str = ' '.join(row_str[:-1])
f.write('|labels {} |features {}\n'.format(label_str, feature_str))
else:
print("File already exists", filename)
示例6: save_as_txt
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def save_as_txt(filename, ndarray):
dir = os.path.dirname(filename)
if not os.path.exists(dir):
os.makedirs(dir)
if not os.path.isfile(filename):
print("Saving to ", filename, end=" ")
with open(filename, 'w') as f:
labels = list(map(' '.join, np.eye(10, dtype=np.uint).astype(str)))
for row in ndarray:
row_str = row.astype(str)
label_str = labels[row[-1]]
feature_str = ' '.join(row_str[:-1])
f.write('|labels {} |features {}\n'.format(label_str, feature_str))
else:
print("File already exists", filename)
示例7: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def __call__(self, shape, seed, offset=None):
fraction_low_freqs, acceleration = self.choose_acceleration(seed)
num_cols = shape[-2]
num_low_freqs = int(round(num_cols * fraction_low_freqs))
# Create the mask
mask = np.zeros(num_cols, dtype=np.float32)
pad = (num_cols - num_low_freqs + 1) // 2
mask[pad:pad + num_low_freqs] = True
# Determine acceleration rate by adjusting for the number of low frequencies
adjusted_accel = (acceleration * (num_low_freqs - num_cols)) / (num_low_freqs * acceleration - num_cols)
if offset == None:
offset = random.randrange(round(adjusted_accel))
accel_samples = np.arange(offset, num_cols - 1, adjusted_accel)
accel_samples = np.around(accel_samples).astype(np.uint)
mask[accel_samples] = True
# Reshape the mask
mask_shape = [1 for _ in shape]
mask_shape[-2] = num_cols
mask = torch.from_numpy(mask.reshape(*mask_shape).astype(np.float32))
return mask, num_low_freqs
示例8: brute_sort_objects_no_hash
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def brute_sort_objects_no_hash(data) -> Tuple[numpy.ndarray, numpy.ndarray]:
unique = []
inverse = numpy.zeros(dtype=numpy.uint, shape=len(data))
for i, d in enumerate(data):
try:
index = unique.index(d)
except ValueError:
index = len(unique)
unique.append(d)
inverse[i] = index
unique_ = numpy.empty(len(unique), dtype=object)
for index, obj in enumerate(unique):
unique_[index] = obj
return unique_, numpy.array(inverse)
示例9: test_save_gids
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def test_save_gids(thalamocortical):
if os.path.exists('tmp/gid_table.h5'):
os.remove('tmp/gid_table.h5')
assert(thalamocortical.nodes.has_gids == False)
thalamocortical.nodes.generate_gids(file_name='tmp/gid_table.h5')
assert(os.path.exists('tmp/gid_table.h5'))
gid_h5 = h5py.File('tmp/gid_table.h5', mode='r')
assert('gid' in gid_h5)
assert(len(gid_h5['gid']) == 9449)
assert(np.issubdtype(gid_h5['gid'].dtype, np.uint))
assert('node_id' in gid_h5)
assert(len(gid_h5['node_id']) == 9449)
assert(np.issubdtype(gid_h5['node_id'].dtype, np.uint))
assert('population' in gid_h5)
assert(len(gid_h5['population']) == 9449)
print(gid_h5['population'])
assert(np.issubdtype(gid_h5['population'].dtype, np.integer))
assert(set(np.unique(gid_h5['population'][...])) == set([0, 1]))
assert(set(np.unique(gid_h5['population_names'][...])) == set(['v1', 'lgn']))
示例10: test_pdist_dtype_equivalence
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def test_pdist_dtype_equivalence(self):
# Tests that the result is not affected by type up-casting
eps = 1e-07
tests = [(eo['random-bool-data'], self.valid_upcasts['bool']),
(eo['random-uint-data'], self.valid_upcasts['uint']),
(eo['random-int-data'], self.valid_upcasts['int']),
(eo['random-float32-data'], self.valid_upcasts['float32'])]
for metric in _METRICS_NAMES:
for test in tests:
X1 = test[0][::5, ::2]
try:
y1 = pdist(X1, metric=metric)
except Exception as e:
e_cls = e.__class__
if verbose > 2:
print(e_cls.__name__)
print(e)
for new_type in test[1]:
X2 = new_type(X1)
assert_raises(e_cls, pdist, X2, metric=metric)
else:
for new_type in test[1]:
y2 = pdist(new_type(X1), metric=metric)
_assert_within_tol(y1, y2, eps, verbose > 2)
示例11: testNumpyConversion
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def testNumpyConversion(self):
self.assertIs(tf.float32, tf.as_dtype(np.float32))
self.assertIs(tf.float64, tf.as_dtype(np.float64))
self.assertIs(tf.int32, tf.as_dtype(np.int32))
self.assertIs(tf.int64, tf.as_dtype(np.int64))
self.assertIs(tf.uint8, tf.as_dtype(np.uint8))
self.assertIs(tf.uint16, tf.as_dtype(np.uint16))
self.assertIs(tf.int16, tf.as_dtype(np.int16))
self.assertIs(tf.int8, tf.as_dtype(np.int8))
self.assertIs(tf.complex64, tf.as_dtype(np.complex64))
self.assertIs(tf.complex128, tf.as_dtype(np.complex128))
self.assertIs(tf.string, tf.as_dtype(np.object))
self.assertIs(tf.string, tf.as_dtype(np.array(["foo", "bar"]).dtype))
self.assertIs(tf.bool, tf.as_dtype(np.bool))
with self.assertRaises(TypeError):
tf.as_dtype(np.dtype([("f1", np.uint), ("f2", np.int32)]))
示例12: to_spmatrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def to_spmatrix(self):
r"""
Convert Pauli to a sparse matrix representation (CSR format).
Order is q_{n-1} .... q_0, i.e., $P_{n-1} \otimes ... P_0$
Returns:
scipy.sparse.csr_matrix: a sparse matrix with CSR format that
represents the pauli.
"""
_x, _z = self._x, self._z
n = 2**len(_x)
twos_array = 1 << np.arange(len(_x))
xs = np.array(_x).dot(twos_array)
zs = np.array(_z).dot(twos_array)
rows = np.arange(n+1, dtype=np.uint)
columns = rows ^ xs
global_factor = (-1j)**np.dot(np.array(_x, dtype=np.uint), _z)
data = global_factor*(-1)**np.mod(_count_set_bits(zs & rows), 2)
return sparse.csr_matrix((data, columns, rows), shape=(n, n))
示例13: rotate_image_with_invrmat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def rotate_image_with_invrmat(cvmat, rotateAngle):
assert (cvmat.dtype == np.uint8) , " only support normalize np.uint in rotate_image_with_invrmat'"
##Make sure cvmat is square?
height, width, channel = cvmat.shape
center = ( width//2, height//2)
rotateMatrix = cv2.getRotationMatrix2D(center, rotateAngle, 1.0)
cos, sin = np.abs(rotateMatrix[0,0]), np.abs(rotateMatrix[0, 1])
newH = int((height*sin)+(width*cos))
newW = int((height*cos)+(width*sin))
rotateMatrix[0,2] += (newW/2) - center[0] #x
rotateMatrix[1,2] += (newH/2) - center[1] #y
# rotate image
outMat = cv2.warpAffine(cvmat, rotateMatrix, (newH, newW), borderValue=(128, 128, 128))
# generate inv rotate matrix
invRotateMatrix = cv2.invertAffineTransform(rotateMatrix)
return (outMat, invRotateMatrix, (width, height))
示例14: filter_contours_area_of_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def filter_contours_area_of_image(self, image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(
image.shape[:2]) and hierarchy[0][jv][3] == -1 : # and hierarchy[0][jv][3]==-1 :
found_polygons_early.append(
np.array([ [point] for point in polygon.exterior.coords], dtype=np.uint))
jv += 1
return found_polygons_early
示例15: filter_contours_area_of_image_interiors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import uint [as 別名]
def filter_contours_area_of_image_interiors(self, image, contours, hierarchy, max_area, min_area):
found_polygons_early = list()
jv = 0
for c in contours:
if len(c) < 3: # A polygon cannot have less than 3 points
continue
polygon = geometry.Polygon([point[0] for point in c])
area = polygon.area
if area >= min_area * np.prod(image.shape[:2]) and area <= max_area * np.prod(image.shape[:2]) and \
hierarchy[0][jv][3] != -1:
# print(c[0][0][1])
found_polygons_early.append(
np.array([point for point in polygon.exterior.coords], dtype=np.uint))
jv += 1
return found_polygons_early