本文整理匯總了Python中numpy.type方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.type方法的具體用法?Python numpy.type怎麽用?Python numpy.type使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.type方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_bool_nodes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def get_bool_nodes(nodes): # type: (Tuple[NgraphNode, ...]) -> Tuple[NgraphNode, ...]
"""Convert each input node to bool data type if necessary.
:param nodes: Input nodes to be converted.
:return: Converted nodes.
"""
bool_nodes = []
for node in nodes:
if not node.get_element_type() == NgraphType.boolean:
bool_nodes.append(ng.convert(node, bool))
logger.warning('Converting node of type: <{}> to bool.'.format(get_dtype(
node.get_element_type())))
else:
bool_nodes.append(node)
return tuple(bool_nodes)
示例2: quantize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def quantize(arr, min_val, max_val, levels, dtype=np.int64):
"""Quantize an array of (-inf, inf) to [0, levels-1].
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the quantized array.
Returns:
tuple: Quantized array.
"""
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
f'levels must be a positive integer, but got {levels}')
if min_val >= max_val:
raise ValueError(
f'min_val ({min_val}) must be smaller than max_val ({max_val})')
arr = np.clip(arr, min_val, max_val) - min_val
quantized_arr = np.minimum(
np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)
return quantized_arr
示例3: dequantize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def dequantize(arr, min_val, max_val, levels, dtype=np.float64):
"""Dequantize an array.
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the dequantized array.
Returns:
tuple: Dequantized array.
"""
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
f'levels must be a positive integer, but got {levels}')
if min_val >= max_val:
raise ValueError(
f'min_val ({min_val}) must be smaller than max_val ({max_val})')
dequantized_arr = (arr + 0.5).astype(dtype) * (max_val -
min_val) / levels + min_val
return dequantized_arr
示例4: charge_sector
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def charge_sector(self, value):
if type(value) == int and value == 0:
value = self.leg.chinfo.make_valid() # zero charges
elif value is not None:
value = self.leg.chinfo.make_valid(value)
self._charge_sector = value
if value is not None:
self._mask = np.all(self.leg.to_qflat() == value[np.newaxis, :], axis=1)
self.shape = tuple([np.sum(self._mask)] * 2)
else:
chi2 = self.leg.ind_len
self.shape = (chi2, chi2)
self._mask = np.ones([chi2], dtype=np.bool)
示例5: onnx_tensor_type_to_numpy_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def onnx_tensor_type_to_numpy_type(data_type): # type: (Any) -> np.dtype
"""Return ONNX TensorProto type mapped into numpy dtype.
:param data_type: The type we want to convert from.
:return: Converted numpy dtype.
"""
if type(data_type) is int:
return TENSOR_TYPE_TO_NP_TYPE[data_type]
elif type(data_type) is str:
return TENSOR_TYPE_TO_NP_TYPE[TensorProto.DataType.Value(data_type)]
else:
raise ValueError('Unsupported data type representation (%s).', str(type(data_type)))
示例6: np_dtype_to_tensor_type_name
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def np_dtype_to_tensor_type_name(data_type): # type: (np.dtype) -> str
"""Return TensorProto type name respective to provided numpy dtype.
:param data_type: Numpy dtype we want to convert.
:return: String representation of TensorProto type name.
"""
return TensorProto.DataType.Name(NP_TYPE_TO_TENSOR_TYPE[data_type])
示例7: np_dtype_to_tensor_type
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def np_dtype_to_tensor_type(data_type): # type: (np.type) -> int
"""Return TensorProto type for provided numpy dtype.
:param data_type: Numpy data type object.
:return: TensorProto.DataType enum value for corresponding type.
"""
return NP_TYPE_TO_TENSOR_TYPE[data_type]
示例8: __repr__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def __repr__(self):
return "{}({} {} {}{})".format(
type(self).__name__.title(), self.shape, str(self.dtype), "; +batch" if self.has_batch_rank else
"", "; +time" if self.has_time_rank else ""
)
示例9: load_mnist_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def load_mnist_image(shape=(28, 28), dtype=np.float32,
bounds=(0, 1), data_format='channels_last',
fname='mnist0.png', normalize=False):
"""Return the sample mnist image for testing
Parameters
----------
shape : list of integers
The shape of the returned image.
dype : np.type
The type for loading the image
bounds : float tuple
the range of loaded image before normalization
data_format : str
"channels_first" or "channels_last"
fname : str
The name of sample image
normalize : Bool
Whether the image is needed to be normalized.
"""
from PIL import Image
path = os.path.join(os.path.dirname(__file__), 'images/%s' % fname)
image = Image.open(path)
image = np.asarray(image, dtype=dtype)
if(data_format == 'channels_first'):
image = image.reshape([1]+list(shape))
else:
image = image.reshape(list(shape)+[1])
if bounds != (0, 255):
image /= 255.
return image
示例10: from_guess_with_pipe
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def from_guess_with_pipe(cls, npc_matvec, v0_guess, labels_split=None, dtype=None):
"""Create a `FlatLinearOperator`` from a `matvec` function acting on multiple legs.
This function creates a wrapper `matvec` function to allow acting on a "vector" with
multiple legs. The wrapper combines the legs into a :class:`~tenpy.linalg.charges.LegPipe`
before calling the actual `matvec` function, and splits them again in the end.
Parameters
----------
npc_matvec : function
Function to calculate the action of the linear operator on an npc vector
with the given split labels `labels_split`.
Has to return an npc vector with the same legs.
v0_guess : :class:`~tenpy.linalg.np_conserved.Array`
Initial guess/starting vector which can be applied to `npc_matvec`.
labels_split : None | list of str
Labels of v0_guess in the order in which they are to be combined into a
:class:`~tenpy.linalg.charges.LegPipe`. ``None`` defaults to
``v0_guess.get_leg_labels()``.
dtype : np.dtype | None
The data type of the arrays. ``None`` defaults to dtype of `v0_guess` (!).
Returns
-------
lin_op : cls
Instance of the class to be used as linear operator
guess_flat : np.ndarray
Numpy vector representing the guess `v0_guess`.
"""
if dtype is None:
dtype = v0_guess.dtype
if labels_split is None:
labels_split = v0_guess.get_leg_labels()
v0_combined = v0_guess.combine_legs(labels_split, qconj=+1)
if v0_combined.rank != 1:
raise ValueError("`labels_split` must contain all the legs of `v0_guess`")
pipe = v0_combined.legs[0]
pipe_label = v0_combined.get_leg_labels()[0]
res = cls(npc_matvec, pipe, dtype, v0_combined.qtotal, pipe_label)
res._labels_split = labels_split
res._npc_matvec_multileg = npc_matvec
res.npc_matvec = res._npc_matvec_wrapper # activate the wrapper
guess_flat = res.npc_to_flat(v0_combined)
return res, guess_flat
示例11: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def __init__(self, low, high, shape=None, add_batch_rank=False, add_time_rank=False, time_major=False,
dtype=np.float32):
"""
Args:
low (any): The lower bound (see Valid Inputs for more information).
high (any): The upper bound (see Valid Inputs for more information).
shape (tuple): The shape of this space.
dtype (np.type): The data type (as numpy type) for this Space.
Allowed are: np.int8,16,32,64, np.float16,32,64 and np.bool_.
Valid inputs:
BoxSpace(0.0, 1.0) # low and high are given as scalars and shape is assumed to be ()
-> single scalar between low and high.
BoxSpace(-1.0, 1.0, (3,4)) # low and high are scalars, and shape is provided -> nD array
where all(!) elements are between low and high.
BoxSpace(np.array([-1.0,-2.0]), np.array([2.0,4.0])) # low and high are arrays of the same shape
(no shape given!) -> nD array where each dimension has different bounds.
"""
super(BoxSpace, self).__init__(add_batch_rank=add_batch_rank, add_time_rank=add_time_rank,
time_major=time_major)
self.dtype = dtype
# Determine the shape.
if shape is None:
if isinstance(low, (int, float, bool)):
self._shape = ()
else:
self._shape = np.shape(low)
else:
assert isinstance(shape, (tuple, list)), "ERROR: `shape` must be None or a tuple/list."
self._shape = tuple(shape)
# Determine the bounds.
# False if bounds are individualized (each dimension has its own lower and upper bounds and we can get
# the single values from self.low and self.high), or a tuple of the globally valid low/high values that apply
# to all values in all dimensions.
# 0D Space.
if self._shape == ():
if isinstance(low, np.ndarray):
assert low.shape == (), "ERROR: If shape == (), `low` must be scalar!"
low = np.asscalar(low)
if isinstance(high, np.ndarray):
assert high.shape == (), "ERROR: If shape == (), `high` must be scalar!"
high = np.asscalar(high)
self.global_bounds = (low, high)
# nD Space (n > 0). Bounds can be single number or individual bounds.
else:
# Low/high values are given individually per item.
if isinstance(low, (list, tuple, np.ndarray)):
self.global_bounds = False
# Only one low/high value. Use these as generic bounds for all values.
else:
assert np.isscalar(low) and np.isscalar(high)
self.global_bounds = (low, high)
self.low = np.array(low)
self.high = np.array(high)
assert self.low.shape == self.high.shape
示例12: load_cifar_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import type [as 別名]
def load_cifar_image(shape=(32, 32), dtype=np.float32,
bounds=(0, 1), data_format='channels_last',
fname='cifar0.png', normalize=True):
"""Return the sample mnist image for testing
Parameters
----------
shape : list of integers
The shape of the returned image.
dype : np.type
The type for loading the image
bounds : float tuple
the range of loaded image before normalization
data_format : str
"channels_first" or "channels_last"
fname : str
The name of sample image
normalize : Bool
Whether the image is needed to be normalized.
"""
from PIL import Image
path = os.path.join(os.path.dirname(__file__), 'images/%s' % fname)
image = Image.open(path)
image = np.asarray(image, dtype=dtype)
if(data_format == 'channels_first'):
image = image.reshape([3]+list(shape))
else:
image = image.reshape(list(shape)+[3])
if bounds != (0, 255):
image /= 255.
if(normalize):
mean = np.array([0.485, 0.456, 0.406]).reshape(3,1,1)
std = np.array([0.225, 0.225, 0.225]).reshape(3,1,1)
image = image - mean
image = image / std
image = np.asarray(image, dtype=dtype)
return image