本文整理匯總了Python中numpy.true_divide方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.true_divide方法的具體用法?Python numpy.true_divide怎麽用?Python numpy.true_divide使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.true_divide方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_fit
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def reduce_fit(interface, state, label, inp):
"""
Function joins all partially calculated matrices ETE and ETDe, aggregates them and it calculates final parameters.
"""
import numpy as np
out = interface.output(0)
sum_etde = 0
sum_ete = [0 for _ in range(len(state["X_indices"]) + 1)]
for key, value in inp:
if key == "etde":
sum_etde += value
else:
sum_ete[key] += value
sum_ete += np.true_divide(np.eye(len(sum_ete)), state["nu"])
out.add("params", np.linalg.lstsq(sum_ete, sum_etde)[0])
示例2: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod,
np.greater, np.greater_equal, np.less, np.less_equal,
np.equal, np.not_equal]
a = np.array('1')
b = 1
c = np.array([1., 2.])
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
assert_raises(TypeError, f, c, a)
示例3: test_NotImplemented_not_returned
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
示例4: confusion_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def confusion_matrix(ap, r1, cam_p, nCam):
ap_mat = np.zeros((nCam, nCam), np.float32)
r1_mat = np.zeros((nCam, nCam), np.float32)
count1 = np.zeros((nCam, nCam), np.float32) + 1e-5
count2 = np.zeros((nCam, nCam), np.float32) + 1e-5
for i_p, p_i in enumerate(cam_p):
for cam_i in range(nCam):
ap_mat[p_i, cam_i] += ap[i_p, cam_i]
if ap[i_p, cam_i] != 0:
count1[p_i, cam_i] += 1
if r1[i_p, cam_i] >= 0:
r1_mat[p_i, cam_i] += r1[i_p, cam_i]
count2[p_i, cam_i] += 1
ap_mat = np.true_divide(ap_mat, count1)
r1_mat = np.true_divide(r1_mat, count2)
return r1_mat, ap_mat
示例5: fit_cube_param
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def fit_cube_param(vol_dim, cube_size, ita):
dim = np.asarray(vol_dim)
fold = dim / cube_size + ita
ovlap = np.ceil(
np.true_divide(
(fold * cube_size - dim),
(fold - 1))) # dim+ita*cubesize-dim
ovlap = ovlap.astype('int')
# print( "ovlap:", str( ovlap ) )#[62 62 86]
fold = np.ceil(np.true_divide((dim + (fold - 1) * ovlap), cube_size))
fold = fold.astype('int')
# print( "fold:", str( fold) ) fold: [8 8 6]
return fold, ovlap
# decompose volume into list of cubes
示例6: true_divide
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def true_divide(x1, x2):
def _avoid_float64(x1, x2):
if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64):
x1 = tf.cast(x1, dtype=tf.float32)
x2 = tf.cast(x2, dtype=tf.float32)
return x1, x2
def f(x1, x2):
if x1.dtype == tf.bool:
assert x2.dtype == tf.bool
float_ = dtypes.default_float_type()
x1 = tf.cast(x1, float_)
x2 = tf.cast(x2, float_)
if not dtypes.is_allow_float64():
# tf.math.truediv in Python3 produces float64 when both inputs are int32
# or int64. We want to avoid that when is_allow_float64() is False.
x1, x2 = _avoid_float64(x1, x2)
return tf.math.truediv(x1, x2)
return _bin_op(f, x1, x2)
示例7: f1_score_from_stats
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def f1_score_from_stats(tp, fp, fn, average='micro'):
assert len(tp) == len(fp)
assert len(fp) == len(fn)
if average not in set(['micro', 'macro']):
raise ValueError("Specify micro or macro")
if average == 'micro':
f1 = 2*numpy.sum(tp) / \
float(2*numpy.sum(tp) + numpy.sum(fp) + numpy.sum(fn))
elif average == 'macro':
def safe_div(a, b):
""" ignore / 0, div0( [-1, 0, 1], 0 ) -> [0, 0, 0] """
with numpy.errstate(divide='ignore', invalid='ignore'):
c = numpy.true_divide(a, b)
return c[numpy.isfinite(c)]
f1 = numpy.mean(safe_div(2*tp, 2*tp + fp + fn))
return f1
示例8: testFloatBasic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def testFloatBasic(self):
x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32)
y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32)
self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True)
self._compareBoth(x, y, np.subtract, tf.sub)
self._compareBoth(x, y, np.multiply, tf.mul)
self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv)
self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv)
self._compareBoth(x, y, np.add, _ADD)
self._compareBoth(x, y, np.subtract, _SUB)
self._compareBoth(x, y, np.multiply, _MUL)
self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV)
self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV)
try:
from scipy import special # pylint: disable=g-import-not-at-top
a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32)
x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32)
self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma)
self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac)
# Need x > 1
self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta)
n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32)
self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma)
except ImportError as e:
tf.logging.warn("Cannot test special functions: %s" % str(e))
示例9: testDoubleBasic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def testDoubleBasic(self):
x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64)
y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64)
self._compareBoth(x, y, np.add, tf.add)
self._compareBoth(x, y, np.subtract, tf.sub)
self._compareBoth(x, y, np.multiply, tf.mul)
self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv)
self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv)
self._compareBoth(x, y, np.add, _ADD)
self._compareBoth(x, y, np.subtract, _SUB)
self._compareBoth(x, y, np.multiply, _MUL)
self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV)
self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV)
try:
from scipy import special # pylint: disable=g-import-not-at-top
a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32)
x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32)
self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma)
self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac)
except ImportError as e:
tf.logging.warn("Cannot test special functions: %s" % str(e))
示例10: testInt32Basic
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def testInt32Basic(self):
x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32)
y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32)
self._compareBoth(x, y, np.add, tf.add)
self._compareBoth(x, y, np.subtract, tf.sub)
self._compareBoth(x, y, np.multiply, tf.mul)
self._compareBoth(x, y, np.true_divide, tf.truediv)
self._compareBoth(x, y, np.floor_divide, tf.floordiv)
self._compareBoth(x, y, np.mod, tf.mod)
self._compareBoth(x, y, np.add, _ADD)
self._compareBoth(x, y, np.subtract, _SUB)
self._compareBoth(x, y, np.multiply, _MUL)
self._compareBoth(x, y, np.true_divide, _TRUEDIV)
self._compareBoth(x, y, np.floor_divide, _FLOORDIV)
self._compareBoth(x, y, np.mod, _MOD)
# _compareBoth tests on GPU only for floating point types, so test
# _MOD for int32 on GPU by calling _compareGpu
self._compareGpu(x, y, np.mod, _MOD)
示例11: h
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def h(values):
"""
Function calculates entropy.
values: list of integers
"""
ent = np.true_divide(values, np.sum(values))
return -np.sum(np.multiply(ent, np.log2(ent)))
示例12: info_gain_numeric
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def info_gain_numeric(x, y, accuracy):
x_unique = list(np.unique(x))
if len(x_unique) == 1:
return None
indices = x.argsort() # sort numeric attribute
x, y = x[indices], y[indices] # save sorted features with sorted labels
right_dist = np.bincount(y)
dummy_class = np.array([len(right_dist)])
class_indices = right_dist.nonzero()[0]
right_dist = right_dist[class_indices]
left_dist = np.zeros(len(class_indices))
diffs = np.nonzero(y[:-1] != y[1:])[0] + 1 # different neighbor classes have value True
if accuracy > 0:
diffs = np.array([diffs[i] for i in range(1, len(diffs)) if diffs[i] - diffs[i - 1] > accuracy],
dtype=np.int32) if len(diffs) > 15 else diffs
intervals = np.array((np.concatenate(([0], diffs[:-1])), diffs)).T
if len(diffs) < 2:
return None
max_ig, max_i, max_j = 0, 0, 0
prior_h = h(right_dist) # calculate prior entropy
for i, j in intervals:
dist = np.bincount(np.concatenate((dummy_class, y[i:j])))[class_indices]
left_dist += dist
right_dist -= dist
coef = np.true_divide((np.sum(left_dist), np.sum(right_dist)), len(y))
ig = prior_h - np.dot(coef, [h(left_dist[left_dist.nonzero()]), h(right_dist[right_dist.nonzero()])])
if ig > max_ig:
max_ig, max_i, max_j = ig, i, j
if x[max_i] == x[max_j]:
ind = x_unique.index(x[max_i])
mean = np.float32(np.mean((x_unique[1 if ind == 0 else ind - 1], x_unique[ind])))
else:
mean = np.float32(np.mean((x[max_i], x[max_j])))
return float(max_ig), [mean, mean]
示例13: qgram_similarity
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def qgram_similarity(s1, s2, include_wb=True, ngram=(2, 2)):
if len(s1) != len(s2):
raise ValueError('Arrays or Series have to be same length.')
if len(s1) == len(s2) == 0:
return []
# include word boundaries or not
analyzer = 'char_wb' if include_wb is True else 'char'
# prepare data
data = s1.append(s2).fillna('')
# The vectorizer
vectorizer = CountVectorizer(
analyzer=analyzer, strip_accents='unicode', ngram_range=ngram)
vec_fit = vectorizer.fit_transform(data)
def _metric_sparse_euclidean(u, v):
match_ngrams = u.minimum(v).sum(axis=1)
total_ngrams = np.maximum(u.sum(axis=1), v.sum(axis=1))
# division by zero is not possible in our case, but 0/0 is possible.
# Numpy raises a warning in that case.
with warnings.catch_warnings():
warnings.simplefilter("ignore")
m = np.true_divide(match_ngrams, total_ngrams).A1
return m
return _metric_sparse_euclidean(vec_fit[:len(s1)], vec_fit[len(s1):])
示例14: img_scaling
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def img_scaling(img, scale='0,1'):
if scale == '0,1':
try:
img /= 255.
except TypeError: # ufunc 'true divide' output ~
img = np.true_divide(img, 255.0, casting='unsafe')
elif scale == '-1,1':
try:
img = (img / 127.5) - 1.
except TypeError:
img = np.true_divide(img, 127.5, casting='unsafe') - 1.
else:
raise ValueError("[-] Only '0,1' or '-1,1' please - (%s)" % scale)
return img
示例15: _hist_bin_doane
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import true_divide [as 別名]
def _hist_bin_doane(x, range):
"""
Doane's histogram bin estimator.
Improved version of Sturges' formula which works better for
non-normal data. See
stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
del range # unused
if x.size > 2:
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
sigma = np.std(x)
if sigma > 0.0:
# These three operations add up to
# g1 = np.mean(((x - np.mean(x)) / sigma)**3)
# but use only one temp array instead of three
temp = x - np.mean(x)
np.true_divide(temp, sigma, temp)
np.power(temp, 3, temp)
g1 = np.mean(temp)
return x.ptp() / (1.0 + np.log2(x.size) +
np.log2(1.0 + np.absolute(g1) / sg1))
return 0.0