當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.transpose方法代碼示例

本文整理匯總了Python中numpy.transpose方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.transpose方法的具體用法?Python numpy.transpose怎麽用?Python numpy.transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: similarity_label

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def similarity_label(self, words, normalization=True):
        """
        you can calculate more than one word at the same time.
        """
        if self.model==None:
            raise Exception('no model.')
        if isinstance(words, string_types):
            words=[words]
        vectors=np.transpose(self.model.wv.__getitem__(words))
        if normalization:
            unit_vector=unitvec(vectors,ax=0) # 這樣寫比原來那樣速度提升一倍
            #unit_vector=np.zeros((len(vectors),len(words)))
            #for i in range(len(words)):
            #    unit_vector[:,i]=matutils.unitvec(vectors[:,i])
            dists=np.dot(self.Label_vec_u, unit_vector)
        else:
            dists=np.dot(self.Label_vec, vectors)
        return dists 
開發者ID:Coldog2333,項目名稱:Financial-NLP,代碼行數:20,代碼來源:NLP.py

示例2: train_lr_rfeinman

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
    """
    TODO
    :param densities_pos:
    :param densities_neg:
    :param uncerts_pos:
    :param uncerts_neg:
    :return:
    """
    values_neg = np.concatenate(
        (densities_neg.reshape((1, -1)),
         uncerts_neg.reshape((1, -1))),
        axis=0).transpose([1, 0])
    values_pos = np.concatenate(
        (densities_pos.reshape((1, -1)),
         uncerts_pos.reshape((1, -1))),
        axis=0).transpose([1, 0])

    values = np.concatenate((values_neg, values_pos))
    labels = np.concatenate(
        (np.zeros_like(densities_neg), np.ones_like(densities_pos)))

    lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)

    return values, labels, lr 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:27,代碼來源:util.py

示例3: train

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def train(self, inputs_list, targets_list):
        inputs = np.array(inputs_list, ndmin=2).T
        targets = np.array(targets_list, ndmin=2).T

        hidden_inputs = np.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)

        final_inputs = np.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)

        output_errors = targets - final_outputs
        hidden_errors = np.dot(self.who.T, output_errors)

        self.who += self.lr * np.dot((output_errors *
                                      final_outputs *
                                      (1.0 - final_outputs)), np.transpose(hidden_outputs))
        self.wih += self.lr * np.dot((hidden_errors *
                                      hidden_outputs *
                                      (1.0 - hidden_outputs)), np.transpose(inputs))
        
        pass

    # query 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:25,代碼來源:nn.py

示例4: jacobian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def jacobian(self, p, into=None):
        # transpose to be 3 x 2 x n
        p = np.transpose(np.reshape(p, (-1, 3, 2)), (1,2,0))
        # First, get the two legs...
        (dx_ab, dy_ab) = p[1] - p[0]
        (dx_ac, dy_ac) = p[2] - p[0]
        (dx_bc, dy_bc) = p[2] - p[1]
        # now, the area is half the z-value of the cross-product...
        sarea0 = 0.5 * (dx_ab*dy_ac - dx_ac*dy_ab)
        # but we want to abs it
        dsarea0 = np.sign(sarea0)
        z = np.transpose([[-dy_bc,dx_bc], [dy_ac,-dx_ac], [-dy_ab,dx_ab]], (2,0,1))
        z = times(0.5*dsarea0, z)
        m = numel(p)
        n = p.shape[2]
        ii = (np.arange(n) * np.ones([6, n])).T.flatten()
        z = sps.csr_matrix((z.flatten(), (ii, np.arange(len(ii)))), shape=(n, m))
        return safe_into(into, z) 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:core.py

示例5: from_logeccen

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def from_logeccen(logecc, vmin=0, vmax=90, offset=0.75):
    '''
    from_logeccen(logecc) yields a rescaled linear-space version of the log-eccentricity value (or
      values) logecc.
    from_logeccen(logxy_matrix) rescales all the (x,y) points in the given matrix to have
      linearly-spaced eccentricity values.

    from_logeccen is the inverse of to_logeccen.
    '''
    if pimms.is_matrix(logecc):
        xy = np.asarray(logecc)
        trq = xy.shape[0] != 2
        xy = np.transpose(xy) if trq else np.asarray(xy)
        r = np.sqrt(np.sum(xy**2, axis=0))
        esc = from_logeccen(r, vmin=vmin, vmax=vmax, offset=offset)
        ecc = zinv(r)
        xy = xy * [ecc,ecc] * [esc,esc]
        return xy.T if trq else xy
    else:
        logecc = np.asarray(logecc)
        (vmin,vmax,offset) = [np.asarray(u) for u in (vmin,vmax,offset)]
        (vmin, vmax) = [np.log(u + offset) for u in (vmin, vmax)]
        logecc = logecc*(vmax - vmin) + vmin
        return np.exp(logecc) - offset 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:26,代碼來源:retinotopy.py

示例6: angle_to_cortex

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def angle_to_cortex(self, theta, rho):
        'See help(neuropythy.registration.RetinotopyModel.angle_to_cortex).'
        #TODO: This should be made to work correctly with visual area boundaries: this could be done
        # by, for each area (e.g., V2) looking at its boundaries (with V1 and V3) and flipping the
        # adjacent triangles so that there is complete coverage of each hemifield, guaranteed.
        if not pimms.is_vector(theta): return self.angle_to_cortex([theta], [rho])[0]
        theta = np.asarray(theta)
        rho = np.asarray(rho)
        zs = np.asarray(
            rho * np.exp([np.complex(z) for z in 1j * ((90.0 - theta)/180.0*np.pi)]),
            dtype=np.complex)
        coords = np.asarray([zs.real, zs.imag]).T
        if coords.shape[0] == 0: return np.zeros((0, len(self.visual_meshes), 2))
        # we step through each area in the forward model and return the appropriate values
        tx = self.transform
        res = np.transpose(
            [self.visual_meshes[area].interpolate(coords, 'cortical_coordinates', method='linear')
             for area in sorted(self.visual_meshes.keys())],
            (1,0,2))
        if tx is not None:
            res = np.asarray(
                [np.dot(tx, np.vstack((area_xy.T, np.ones(len(area_xy)))))[0:2].T
                 for area_xy in res])
        return res 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:26,代碼來源:models.py

示例7: __call__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def __call__(self, x, y=None):
        if y is not None: x = (x,y)
        x = np.asarray(x)
        if len(x.shape) == 1: return self([x])[0]
        x = np.transpose(x) if x.shape[0] == 2 else x
        if not x.flags['WRITEABLE']: x = np.array(x)
        crd = self.coordinates
        sig = self.sigma
        wts = self._weight
        res = np.zeros(x.shape[0])
        for (sh, qd, bi) in zip(self.spatial_hashes, self.bin_query_distances, self.sigma_bins):
            neis = sh.query_ball_point(x, qd)
            res += [
                np.sum(w * np.exp(-0.5 * d2/s**2))
                for (ni,pt) in zip(neis,x)
                for ii in [bi[ni]]
                for (w,s,d2) in [(wts[ii], sig[ii], np.sum((crd[ii] - pt)**2, axis=1))]]
        return res 
開發者ID:noahbenson,項目名稱:neuropythy,代碼行數:20,代碼來源:cmag.py

示例8: visualize_sampling

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def visualize_sampling(self,permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations
        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show()

    # Heatmap of attention (x=cities; y=steps) 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:23,代碼來源:dataset.py

示例9: visualize_sampling

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def visualize_sampling(self, permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0

        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations

        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show() 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:23,代碼來源:dataset.py

示例10: superpose_array

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def superpose_array(refArray, array, check=False):
    """
    Superpose arrays by calculating the rotation matrix and the
    translations that minimize the root mean square deviation between and
    array of vectors and a reference array.

    :Parameters:
        #. refArray (numpy.ndarray): the NX3 reference array to superpose to.
        #. array (numpy.ndarray): the NX3 array to calculate the
           transformation of.
        #. check (boolean): whether to check arguments before generating
           points.

    :Returns:
        #. superposedArray (numpy.ndarray): the NX3 array to superposed array.
    """
    rotationMatrix, _,_,_ = get_superposition_transformation(refArray=refArray, array=array, check=check)
    return np.dot( rotationMatrix, np.transpose(array).\
                   reshape(1,3,-1)).transpose().reshape(-1,3) 
開發者ID:bachiraoun,項目名稱:fullrmc,代碼行數:21,代碼來源:Collection.py

示例11: measure_cost

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def measure_cost(repeat, scipy_trans_lhs, scipy_dns_lhs, func_name, *args, **kwargs):
    """Measure time cost of running a function
    """
    mx.nd.waitall()
    args_list = []
    for arg in args:
        args_list.append(arg)
    start = time.time()
    if scipy_trans_lhs:
        args_list[0] = np.transpose(args_list[0]) if scipy_dns_lhs else sp.spmatrix.transpose(args_list[0])
    for _ in range(repeat):
        func_name(*args_list, **kwargs)
    mx.nd.waitall()
    end = time.time()
    diff = end - start
    return diff / repeat 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:dot.py

示例12: decode_topk

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def decode_topk(self, sess, latest_tokens, enc_top_states, dec_init_states):
    """Return the topK results and new decoder states."""
    feed = {
        self._enc_top_states: enc_top_states,
        self._dec_in_state:
            np.squeeze(np.array(dec_init_states)),
        self._abstracts:
            np.transpose(np.array([latest_tokens])),
        self._abstract_lens: np.ones([len(dec_init_states)], np.int32)}

    results = sess.run(
        [self._topk_ids, self._topk_log_probs, self._dec_out_state],
        feed_dict=feed)

    ids, probs, states = results[0], results[1], results[2]
    new_states = [s for s in states]
    return ids, probs, new_states 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:seq2seq_attention_model.py

示例13: _write_map_files

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def _write_map_files(b_in, b_out, transform):
  cats = get_categories()

  env = utils.Foo(padding=10, resolution=5, num_point_threshold=2,
                  valid_min=-10, valid_max=200, n_samples_per_face=200)
  robot = utils.Foo(radius=15, base=10, height=140, sensor_height=120,
                    camera_elevation_degree=-15)
  
  building_loader = factory.get_dataset('sbpd')
  for flip in [False, True]:
    b = nav_env.Building(b_out, robot, env, flip=flip,
                         building_loader=building_loader)
    logging.info("building_in: %s, building_out: %s, transform: %d", b_in,
                 b_out, transform)
    maps = _get_semantic_maps(b_in, transform, b.map, flip, cats)
    maps = np.transpose(np.array(maps), axes=[1,2,0])

    #  Load file from the cache.
    file_name = '{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.pkl'
    file_name = file_name.format(b.building_name, b.map.size[0], b.map.size[1],
                                 b.map.origin[0], b.map.origin[1],
                                 b.map.resolution, flip)
    out_file = os.path.join(DATA_DIR, 'processing', 'class-maps', file_name)
    logging.info('Writing semantic maps to %s.', out_file)
    save_variables(out_file, [maps, cats], ['maps', 'cats'], overwrite=True) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:27,代碼來源:script_preprocess_annoations_S3DIS.py

示例14: intersection

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def intersection(boxes1, boxes2):
  """Compute pairwise intersection areas between boxes.

  Args:
    boxes1: a numpy array with shape [N, 4] holding N boxes
    boxes2: a numpy array with shape [M, 4] holding M boxes

  Returns:
    a numpy array with shape [N*M] representing pairwise intersection area
  """
  [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1)
  [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1)

  all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2))
  all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2))
  intersect_heights = np.maximum(
      np.zeros(all_pairs_max_ymin.shape),
      all_pairs_min_ymax - all_pairs_max_ymin)
  all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2))
  all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2))
  intersect_widths = np.maximum(
      np.zeros(all_pairs_max_xmin.shape),
      all_pairs_min_xmax - all_pairs_max_xmin)
  return intersect_heights * intersect_widths 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:np_box_ops.py

示例15: collectdata

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import transpose [as 別名]
def collectdata(self,):
        print 'Start Collect Data...'

        train_x_path = os.path.join(self.input_dir, 'unlabeled_X.bin')

        train_xf = open(train_x_path, 'rb')
        train_x = np.fromfile(train_xf, dtype=np.uint8)
        train_x = np.reshape(train_x, (-1, 3, 96, 96))
        train_x = np.transpose(train_x, (0, 3, 2, 1))

        idx = 0
        for i in xrange(train_x.shape[0]):
            if not self.skipimg:
                transform_and_save(img_arr=train_x[i], output_filename=os.path.join(self.unlabeldir, str(idx) + '.jpg'))
            self.trainpairlist[os.path.join('images', 'unlabeled', str(idx) + '.jpg')] = 'labels/11.txt'
            idx += 1

        print 'Finished Collect Data...' 
開發者ID:cs-chan,項目名稱:ArtGAN,代碼行數:20,代碼來源:ingest_stl10.py


注:本文中的numpy.transpose方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。