本文整理匯總了Python中numpy.tile方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.tile方法的具體用法?Python numpy.tile怎麽用?Python numpy.tile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.tile方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def __init__(self, input_wave_file, output_wave_file, target_phrase):
self.pop_size = 100
self.elite_size = 10
self.mutation_p = 0.005
self.noise_stdev = 40
self.noise_threshold = 1
self.mu = 0.9
self.alpha = 0.001
self.max_iters = 3000
self.num_points_estimate = 100
self.delta_for_gradient = 100
self.delta_for_perturbation = 1e3
self.input_audio = load_wav(input_wave_file).astype(np.float32)
self.pop = np.expand_dims(self.input_audio, axis=0)
self.pop = np.tile(self.pop, (self.pop_size, 1))
self.output_wave_file = output_wave_file
self.target_phrase = target_phrase
self.funcs = self.setup_graph(self.pop, np.array([toks.index(x) for x in target_phrase]))
示例2: create_test_input
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def create_test_input(batch_size, height, width, channels):
"""Create test input tensor.
Args:
batch_size: The number of images per batch or `None` if unknown.
height: The height of each image or `None` if unknown.
width: The width of each image or `None` if unknown.
channels: The number of channels per image or `None` if unknown.
Returns:
Either a placeholder `Tensor` of dimension
[batch_size, height, width, channels] if any of the inputs are `None` or a
constant `Tensor` with the mesh grid values along the spatial dimensions.
"""
if None in [batch_size, height, width, channels]:
return tf.placeholder(tf.float32, (batch_size, height, width, channels))
else:
return tf.to_float(
np.tile(
np.reshape(
np.reshape(np.arange(height), [height, 1]) +
np.reshape(np.arange(width), [1, width]),
[1, height, width, 1]),
[batch_size, 1, 1, channels]))
示例3: sample_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def sample_batch(self, data_inputs, ground_truth, ruitu_inputs, batch_size, certain_id=None, certain_feature=None):
max_i, _, max_j, _ = data_inputs.shape # Example: (1148, 37, 10, 9)-(sample_ind, timestep, sta_id, features)
if certain_id == None and certain_feature == None:
id_ = np.random.randint(max_j, size=batch_size)
i = np.random.randint(max_i, size=batch_size)
batch_inputs = data_inputs[i,:,id_,:]
batch_ouputs = ground_truth[i,:,id_,:]
batch_ruitu = ruitu_inputs[i,:,id_,:]
# id used for embedding
expd_id = np.expand_dims(id_,axis=1)
batch_ids = np.tile(expd_id,(1,37))
#batch_time =
elif certain_id != None:
pass
return batch_inputs, batch_ruitu, batch_ouputs, batch_ids
示例4: zxy_grid
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat):
# create linespace grid between bottom and top of tri z
#subs = 7
t_min = np.min(tymin)
t_max = np.max(tymax)
divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32)
# figure out which triangles and which co are in each section
co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax])
tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax])
for i, j in zip(co_bools, tri_bools):
if (np.sum(i) > 0) & (np.sum(j) > 0):
c3 = c[i]
t3 = t[j]
c_peat.append(np.repeat(c3, t3.shape[0]))
t_peat.append(np.tile(t3, c3.shape[0]))
示例5: load_dynamic_contour
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def load_dynamic_contour(template_flame_path='None', contour_embeddings_path='None', static_embedding_path='None', angle=0):
template_mesh = Mesh(filename=template_flame_path)
contour_embeddings_path = contour_embeddings_path
dynamic_lmks_embeddings = np.load(contour_embeddings_path, allow_pickle=True).item()
lmk_face_idx_static, lmk_b_coords_static = load_static_embedding(static_embedding_path)
lmk_face_idx_dynamic = dynamic_lmks_embeddings['lmk_face_idx'][angle]
lmk_b_coords_dynamic = dynamic_lmks_embeddings['lmk_b_coords'][angle]
dynamic_lmks = mesh_points_by_barycentric_coordinates(template_mesh.v, template_mesh.f, lmk_face_idx_dynamic, lmk_b_coords_dynamic)
static_lmks = mesh_points_by_barycentric_coordinates(template_mesh.v, template_mesh.f, lmk_face_idx_static, lmk_b_coords_static)
total_lmks = np.vstack([dynamic_lmks, static_lmks])
# Visualization of the pose dependent contour on the template mesh
vertex_colors = np.ones([template_mesh.v.shape[0], 4]) * [0.3, 0.3, 0.3, 0.8]
tri_mesh = trimesh.Trimesh(template_mesh.v, template_mesh.f,
vertex_colors=vertex_colors)
mesh = pyrender.Mesh.from_trimesh(tri_mesh)
scene = pyrender.Scene()
scene.add(mesh)
sm = trimesh.creation.uv_sphere(radius=0.005)
sm.visual.vertex_colors = [0.9, 0.1, 0.1, 1.0]
tfs = np.tile(np.eye(4), (len(total_lmks), 1, 1))
tfs[:, :3, 3] = total_lmks
joints_pcl = pyrender.Mesh.from_trimesh(sm, poses=tfs)
scene.add(joints_pcl)
pyrender.Viewer(scene, use_raymond_lighting=True)
示例6: _calc_pareto_set
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def _calc_pareto_set(self, n_pareto_points=500):
# The SYM-PART test problem has 9 equivalent Pareto subsets.
h = int(n_pareto_points / 9)
PS = zeros((h * 9, self.n_var))
cnt = 0
for row in [-1, 0, 1]:
for col in [1, 0, -1]:
X1 = np.linspace(row * self.c - self.a, row * self.c + self.a, h)
X2 = np.tile(col * self.b, h)
PS[cnt * h:cnt * h + h, :] = np.vstack((X1, X2)).T
cnt = cnt + 1
if self.w != 0:
# If rotated, we apply the rotation matrix to PS
# Calculate the rotation matrix
RM = np.array([
[cos(self.w), -sin(self.w)],
[sin(self.w), cos(self.w)]
])
PS = np.array([np.matmul(RM, x) for x in PS])
return PS
示例7: tdhf_frozen_mask
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def tdhf_frozen_mask(eri, kind="ov"):
if isinstance(eri.nocc, int):
nocc = int(eri.model.mo_occ.sum() // 2)
mask = eri.space
else:
nocc = numpy.array(tuple(int(i.sum() // 2) for i in eri.model.mo_occ))
assert numpy.all(nocc == nocc[0])
assert numpy.all(eri.space == eri.space[0, numpy.newaxis, :])
nocc = nocc[0]
mask = eri.space[0]
mask_o = mask[:nocc]
mask_v = mask[nocc:]
if kind == "ov":
mask_ov = numpy.outer(mask_o, mask_v).reshape(-1)
return numpy.tile(mask_ov, 2)
elif kind == "1ov":
return numpy.outer(mask_o, mask_v).reshape(-1)
elif kind == "sov":
mask_ov = numpy.outer(mask_o, mask_v).reshape(-1)
nk = len(eri.model.mo_occ)
return numpy.tile(mask_ov, 2 * nk ** 2)
elif kind == "o,v":
return mask_o, mask_v
示例8: compute_gradient
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def compute_gradient(self, grad=None):
''' Compute the gradient for negative operation wrt input value.
:param grad: The gradient of other operation wrt the negative output.
:type grad: ndarray.
'''
input_value = self.input_nodes[0].output_value
if grad is None:
grad = np.ones_like(self.output_value)
output_shape = np.array(np.shape(input_value))
output_shape[self.axis] = 1.0
tile_scaling = np.shape(input_value) // output_shape
grad = np.reshape(grad, output_shape)
return np.tile(grad, tile_scaling)
示例9: pyeeg_ap_entropy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def pyeeg_ap_entropy(X, M, R):
N = len(X)
Em = pyeeg_embed_seq(X, 1, M)
A = np.tile(Em, (len(Em), 1, 1))
B = np.transpose(A, [1, 0, 2])
D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]|
InRange = np.max(D, axis=2) <= R
# Probability that random M-sequences are in range
Cm = InRange.mean(axis=0)
# M+1-sequences in range if M-sequences are in range & last values are close
Dp = np.abs(np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T)
Cmp = np.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0)
Phi_m, Phi_mp = np.sum(np.log(Cm)), np.sum(np.log(Cmp))
Ap_En = (Phi_m - Phi_mp) / (N - M)
return Ap_En
示例10: pyeeg_samp_entropy
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def pyeeg_samp_entropy(X, M, R):
N = len(X)
Em = pyeeg_embed_seq(X, 1, M)[:-1]
A = np.tile(Em, (len(Em), 1, 1))
B = np.transpose(A, [1, 0, 2])
D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]|
InRange = np.max(D, axis=2) <= R
np.fill_diagonal(InRange, 0) # Don't count self-matches
Cm = InRange.sum(axis=0) # Probability that random M-sequences are in range
Dp = np.abs(np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T)
Cmp = np.logical_and(Dp <= R, InRange).sum(axis=0)
# Avoid taking log(0)
Samp_En = np.log(np.sum(Cm + 1e-100) / np.sum(Cmp + 1e-100))
return Samp_En
# =============================================================================
# Entropy
# =============================================================================
示例11: update_header
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def update_header(self):
''' Harmonize header with image data and affine
'''
hdr = self._header
if not self._data is None:
hdr.set_data_shape(self._data.shape)
if not self._affine is None:
# for more information, go through save_mgh.m in FreeSurfer dist
MdcD = self._affine[:3, :3]
delta = np.sqrt(np.sum(MdcD * MdcD, axis=0))
Mdc = MdcD / np.tile(delta, (3, 1))
Pcrs_c = np.array([0, 0, 0, 1], dtype=np.float)
Pcrs_c[:3] = np.array([self._data.shape[0], self._data.shape[1],
self._data.shape[2]], dtype=np.float) / 2.0
Pxyz_c = np.dot(self._affine, Pcrs_c)
hdr['delta'][:] = delta
hdr['Mdc'][:, :] = Mdc.T
hdr['Pxyz_c'][:] = Pxyz_c[:3]
示例12: setup_graph
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def setup_graph(self, input_audio_batch, target_phrase):
batch_size = input_audio_batch.shape[0]
weird = (input_audio_batch.shape[1] - 1) // 320
logits_arg2 = np.tile(weird, batch_size)
dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
seq_len = np.tile(weird, batch_size).astype(np.int32)
with tf.variable_scope('', reuse=tf.AUTO_REUSE):
inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a')
len_batch = tf.placeholder(tf.float32, name='b')
arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c')
arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d')
arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e')
len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f')
logits = get_logits(inputs, arg2_logits)
target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch)
ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq)
decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True)
sess = tf.Session()
saver = tf.train.Saver(tf.global_variables())
saver.restore(sess, "models/session_dump")
func1 = lambda a, b, c, d, e, f: sess.run(ctcloss,
feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded],
feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
return (func1, func2)
示例13: getctcloss
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def getctcloss(self, input_audio_batch, target_phrase, decode=False):
batch_size = input_audio_batch.shape[0]
weird = (input_audio_batch.shape[1] - 1) // 320
logits_arg2 = np.tile(weird, batch_size)
dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
seq_len = np.tile(weird, batch_size).astype(np.int32)
if decode:
return self.funcs[1](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)
else:
return self.funcs[0](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)
示例14: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def __init__(self, dataset, times):
self.dataset = dataset
self.times = times
self.CLASSES = dataset.CLASSES
if hasattr(self.dataset, 'flag'):
self.flag = np.tile(self.dataset.flag, times)
self._ori_len = len(self.dataset)
示例15: test_batch
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import tile [as 別名]
def test_batch(self, seed=0):
# Generate random TSP-TW instance
input_, or_sequence, tw_open, tw_close = self.gen_instance(test_mode=True, seed=seed)
# Store batch
input_batch = np.tile(input_,(self.batch_size,1,1))
return input_batch, or_sequence, tw_open, tw_close
# Plot a tour