當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.testing方法代碼示例

本文整理匯總了Python中numpy.testing方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.testing方法的具體用法?Python numpy.testing怎麽用?Python numpy.testing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.testing方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_forward_probability2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    wikipedia_results = [
        [0.8182, 0.1818],
        [0.8834, 0.1166],
        [0.1907, 0.8093],
        [0.7308, 0.2692],
        [0.8673, 0.1327],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4) 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:20,代碼來源:test_hmm.py

示例2: test_backward_probability

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.6469, 0.3531],
        [0.5923, 0.4077],
        [0.3763, 0.6237],
        [0.6533, 0.3467],
        [0.6273, 0.3727],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4) 
開發者ID:rafasashi,項目名稱:razzy-spinner,代碼行數:24,代碼來源:test_hmm.py

示例3: assert_array_compare

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='',
                         fill_value=True):
    """
    Asserts that comparison between two masked arrays is satisfied.

    The comparison is elementwise.

    """
    # Allocate a common mask and refill
    m = mask_or(getmask(x), getmask(y))
    x = masked_array(x, copy=False, mask=m, keep_mask=False, subok=False)
    y = masked_array(y, copy=False, mask=m, keep_mask=False, subok=False)
    if ((x is masked) and not (y is masked)) or \
            ((y is masked) and not (x is masked)):
        msg = build_err_msg([x, y], err_msg=err_msg, verbose=verbose,
                            header=header, names=('x', 'y'))
        raise ValueError(msg)
    # OK, now run the basic tests on filled versions
    return np.testing.assert_array_compare(comparison,
                                           x.filled(fill_value),
                                           y.filled(fill_value),
                                           err_msg=err_msg,
                                           verbose=verbose, header=header) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:testutils.py

示例4: test_warning_calls

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_warning_calls():
        # combined "ignore" and stacklevel error
        base = Path(numpy.__file__).parent

        for path in base.rglob("*.py"):
            if base / "testing" in path.parents:
                continue
            if path == base / "__init__.py":
                continue
            if path == base / "random" / "__init__.py":
                continue
            # use tokenize to auto-detect encoding on systems where no
            # default encoding is defined (e.g. LANG='C')
            with tokenize.open(str(path)) as file:
                tree = ast.parse(file.read())
                FindFuncs(path).visit(tree) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:test_warnings.py

示例5: test_cholesky_and_cholesky_grad_shape

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_cholesky_and_cholesky_grad_shape():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the Cholesky op.")

    rng = numpy.random.RandomState(utt.fetch_seed())
    x = tensor.matrix()
    for l in (cholesky(x), Cholesky(lower=True)(x), Cholesky(lower=False)(x)):
        f_chol = theano.function([x], l.shape)
        g = tensor.grad(l.sum(), x)
        f_cholgrad = theano.function([x], g.shape)
        topo_chol = f_chol.maker.fgraph.toposort()
        topo_cholgrad = f_cholgrad.maker.fgraph.toposort()
        if config.mode != 'FAST_COMPILE':
            assert sum([node.op.__class__ == Cholesky
                        for node in topo_chol]) == 0
            assert sum([node.op.__class__ == CholeskyGrad
                        for node in topo_cholgrad]) == 0
        for shp in [2, 3, 5]:
            m = numpy.cov(rng.randn(shp, shp + 10)).astype(config.floatX)
            yield numpy.testing.assert_equal, f_chol(m), (shp, shp)
            yield numpy.testing.assert_equal, f_cholgrad(m), (shp, shp) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_slinalg.py

示例6: test_eigvalsh

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_eigvalsh():
    if not imported_scipy:
        raise SkipTest("Scipy needed for the geigvalsh op.")
    import scipy.linalg

    A = theano.tensor.dmatrix('a')
    B = theano.tensor.dmatrix('b')
    f = function([A, B], eigvalsh(A, B))

    rng = numpy.random.RandomState(utt.fetch_seed())
    a = rng.randn(5, 5)
    a = a + a.T
    for b in [10 * numpy.eye(5, 5) + rng.randn(5, 5)]:
        w = f(a, b)
        refw = scipy.linalg.eigvalsh(a, b)
        numpy.testing.assert_array_almost_equal(w, refw)

    # We need to test None separatly, as otherwise DebugMode will
    # complain, as this isn't a valid ndarray.
    b = None
    B = theano.tensor.NoneConst
    f = function([A], eigvalsh(A, B))
    w = f(a)
    refw = scipy.linalg.eigvalsh(a, b)
    numpy.testing.assert_array_almost_equal(w, refw) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_slinalg.py

示例7: test_diag

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_diag(self):
        # test that it builds a matrix with given diagonal when using
        # vector inputs
        x = theano.tensor.vector()
        y = diag(x)
        assert y.owner.op.__class__ == AllocDiag

        # test that it extracts the diagonal when using matrix input
        x = theano.tensor.matrix()
        y = extract_diag(x)
        assert y.owner.op.__class__ == ExtractDiag

        # other types should raise error
        x = theano.tensor.tensor3()
        ok = False
        try:
            y = extract_diag(x)
        except TypeError:
            ok = True
        assert ok

    # not testing the view=True case since it is not used anywhere. 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_nlinalg.py

示例8: test_numpy_dot_product_2a

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_numpy_dot_product_2a(self):
        random.seed(44)

        listLength = 20

        arr1 = [random.uniform(-10, 10) for _ in range(0, listLength)]
        arr2 = [random.uniform(-10, 10) for _ in range(0, listLength)]

        def f():
            a = numpy.array(arr1)
            b = numpy.array(arr2)

            return numpy.dot(a, b)

        r1 = self.evaluateWithExecutor(f)
        r2 = f()

        numpy.testing.assert_allclose(r1, r2) 
開發者ID:ufora,項目名稱:ufora,代碼行數:20,代碼來源:NumpyTestCases.py

示例9: test_numpy_dot_product_2b

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_numpy_dot_product_2b(self):
        random.seed(44)

        listLength = 20

        arr1 = [random.uniform(-10, 10) for _ in range(0, listLength)]
        arr2 = [random.uniform(-10, 10) for _ in range(0, listLength)]

        def f():
            a = numpy.array(arr1)
            b = numpy.array(arr2)

            return a.dot(b)

        r1 = self.evaluateWithExecutor(f)
        r2 = f()

        numpy.testing.assert_allclose(r1, r2) 
開發者ID:ufora,項目名稱:ufora,代碼行數:20,代碼來源:NumpyTestCases.py

示例10: test_hyp2f1_2

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_hyp2f1_2(self):
        def f(a, b, c, z):
            return scipy.special.hyp2f1(a, b, c, z)

        a,b,c,z = 2.8346157367796936, 0.0102, 3.8346157367796936, 0.9988460588541513

        res1 = self.evaluateWithExecutor(f, a, b, c, z)
        res2 = f(a, b, c, z)

        numpy.testing.assert_almost_equal(
            res1,
            res2
            )

        numpy.testing.assert_almost_equal(
            res1,
            1.0182383750413575
            ) 
開發者ID:ufora,項目名稱:ufora,代碼行數:20,代碼來源:ScipySpecialTestCases.py

示例11: binary_logistic_regression_probabilities

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def binary_logistic_regression_probabilities(self, method):
        X, y = self.exampleData()

        def f():
            fit = BinaryLogisticRegressionFitter(
                C=1.0/len(X),
                hasIntercept=True,
                method=method
                ).fit(X, y)
            return fit.predict_probability(X)

        expectedPredictedProbabilities = [0.45810128, 0.58776695, 0.6510714]
        computedProbabilities = self.evaluateWithExecutor(f)

        numpy.testing.assert_allclose(
            computedProbabilities,
            expectedPredictedProbabilities,
            rtol=0.1
            ) 
開發者ID:ufora,項目名稱:ufora,代碼行數:21,代碼來源:LogisticRegressionTests.py

示例12: test_sort_tensor_by_length

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_sort_tensor_by_length(self):
        tensor = torch.rand([5, 7, 9])
        tensor[0, 3:, :] = 0
        tensor[1, 4:, :] = 0
        tensor[2, 1:, :] = 0
        tensor[3, 5:, :] = 0

        sequence_lengths = torch.LongTensor([3, 4, 1, 5, 7])
        sorted_tensor, sorted_lengths, reverse_indices, _ = util.sort_batch_by_length(
            tensor, sequence_lengths
        )

        # Test sorted indices are padded correctly.
        numpy.testing.assert_array_equal(sorted_tensor[1, 5:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[2, 4:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[3, 3:, :].data.numpy(), 0.0)
        numpy.testing.assert_array_equal(sorted_tensor[4, 1:, :].data.numpy(), 0.0)

        assert sorted_lengths.data.equal(torch.LongTensor([7, 5, 4, 3, 1]))

        # Test restoration indices correctly recover the original tensor.
        assert sorted_tensor.index_select(0, reverse_indices).data.equal(tensor.data) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:24,代碼來源:util_test.py

示例13: test_weighted_sum_works_on_simple_input

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_weighted_sum_works_on_simple_input(self):
        batch_size = 1
        sentence_length = 5
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, sentence_length, embedding_dim)
        sentence_tensor = torch.from_numpy(sentence_array).float()
        attention_tensor = torch.FloatTensor([[0.3, 0.4, 0.1, 0, 1.2]])
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, embedding_dim)
        expected_array = (
            0.3 * sentence_array[0, 0]
            + 0.4 * sentence_array[0, 1]
            + 0.1 * sentence_array[0, 2]
            + 0.0 * sentence_array[0, 3]
            + 1.2 * sentence_array[0, 4]
        )
        numpy.testing.assert_almost_equal(aggregated_array, [expected_array], decimal=5) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:util_test.py

示例14: test_weighted_sum_handles_higher_order_input

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_weighted_sum_handles_higher_order_input(self):
        batch_size = 1
        length_1 = 5
        length_2 = 6
        length_3 = 2
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, length_1, length_2, length_3, embedding_dim)
        attention_array = numpy.random.rand(batch_size, length_1, length_2, length_3)
        sentence_tensor = torch.from_numpy(sentence_array).float()
        attention_tensor = torch.from_numpy(attention_array).float()
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, length_1, length_2, embedding_dim)
        expected_array = (
            attention_array[0, 3, 2, 0] * sentence_array[0, 3, 2, 0]
            + attention_array[0, 3, 2, 1] * sentence_array[0, 3, 2, 1]
        )
        numpy.testing.assert_almost_equal(aggregated_array[0, 3, 2], expected_array, decimal=5) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:util_test.py

示例15: test_weighted_sum_handles_3d_attention_with_3d_matrix

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import testing [as 別名]
def test_weighted_sum_handles_3d_attention_with_3d_matrix(self):
        batch_size = 1
        length_1 = 5
        length_2 = 2
        embedding_dim = 4
        sentence_array = numpy.random.rand(batch_size, length_2, embedding_dim)
        attention_array = numpy.random.rand(batch_size, length_1, length_2)
        sentence_tensor = torch.from_numpy(sentence_array).float()
        attention_tensor = torch.from_numpy(attention_array).float()
        aggregated_array = util.weighted_sum(sentence_tensor, attention_tensor).data.numpy()
        assert aggregated_array.shape == (batch_size, length_1, embedding_dim)
        for i in range(length_1):
            expected_array = (
                attention_array[0, i, 0] * sentence_array[0, 0]
                + attention_array[0, i, 1] * sentence_array[0, 1]
            )
            numpy.testing.assert_almost_equal(aggregated_array[0, i], expected_array, decimal=5) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:19,代碼來源:util_test.py


注:本文中的numpy.testing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。