本文整理匯總了Python中numpy.testing.assert_array_less方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_array_less方法的具體用法?Python testing.assert_array_less怎麽用?Python testing.assert_array_less使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.testing
的用法示例。
在下文中一共展示了testing.assert_array_less方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_matching_function
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_matching_function():
from astropy.coordinates import ICRS
from astropy.coordinates.matching import match_coordinates_3d
# this only uses match_coordinates_3d because that's the actual implementation
cmatch = ICRS([4, 2.1]*u.degree, [0, 0]*u.degree)
ccatalog = ICRS([1, 2, 3, 4]*u.degree, [0, 0, 0, 0]*u.degree)
idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog)
npt.assert_array_equal(idx, [3, 1])
npt.assert_array_almost_equal(d2d.degree, [0, 0.1])
assert d3d.value[0] == 0
idx, d2d, d3d = match_coordinates_3d(cmatch, ccatalog, nthneighbor=2)
assert np.all(idx == 2)
npt.assert_array_almost_equal(d2d.degree, [1, 0.9])
npt.assert_array_less(d3d.value, 0.02)
示例2: test_sample_diag_gaussian
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_sample_diag_gaussian():
""" Test sampling from a multivariate gaussian distribution with a diagonal covariance matrix """
head = DiagGaussianActionHead(1, 5)
array = np.zeros((10000, 5, 2))
sample = head.sample(torch.from_numpy(array))
result_array = sample.detach().cpu().numpy()
nt.assert_array_less(np.abs(result_array.mean(axis=0)), 0.1)
nt.assert_array_less(result_array.std(axis=0), 1.1)
nt.assert_array_less(0.9, result_array.std(axis=0))
array2 = np.zeros((10000, 5, 2))
array2[:, 0, 0] = 5.0
array2[:, 0, 1] = np.log(10)
sample2 = head.sample(torch.from_numpy(array2))
result_array2 = sample2.detach().cpu().numpy()
nt.assert_array_less(result_array2.mean(axis=0), np.array([5.3, 0.1, 0.1, 0.1, 0.1]))
nt.assert_array_less(np.array([4.7, -0.1, -0.1, -0.1, -0.1]), result_array2.mean(axis=0))
示例3: test_sample_categorical
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_sample_categorical():
"""
Test sampling from a categorical distribution
"""
head = CategoricalActionHead(1, 5)
array = np.zeros((10000, 5))
sample = head.sample(torch.from_numpy(array))
result_array = sample.detach().cpu().numpy()
nt.assert_array_less(np.abs(result_array.mean(axis=0)), 2.1)
nt.assert_array_less(1.9, np.abs(result_array.mean(axis=0)))
array2 = np.zeros((10000, 5))
array2[:, 0:4] = -10.0
array2[:, 4] = 10.0
sample2 = head.sample(F.log_softmax(torch.from_numpy(array2), dim=1))
result_array2 = sample2.detach().cpu().numpy()
nt.assert_array_less(np.abs(result_array2.mean(axis=0)), 4.1)
nt.assert_array_less(3.9, np.abs(result_array2.mean(axis=0)))
示例4: assert_maxabs
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def assert_maxabs(actual, expected, value):
npt.assert_array_less(em.maxabs(actual, expected, None), value)
示例5: check_minimizer_bounds
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def check_minimizer_bounds(result, n_calls):
# no values should be below or above the bounds
eps = 10e-9 # check for assert_array_less OR equal
assert_array_less(result.x_iters, np.tile([10+eps, 15+eps], (n_calls, 1)))
assert_array_less(np.tile([-5-eps, 0-eps], (n_calls, 1)), result.x_iters)
示例6: test_estimate_theta_E
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_estimate_theta_E():
x = np.array([-0.45328229, 0.57461556, 0.53757501, -0.42312438])
y = np.array([0.69582971, -0.51226356, 0.37577509, -0.40245467])
approx = util.approx_theta_E(x, y)
npt.assert_array_less(approx - 1, 0.2)
示例7: test_regularized_nonlinear
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_regularized_nonlinear(self):
"""
Test gradient descent solver with regularized non-linear acceleration,
solving problems with L2-norm functions.
"""
dim = 25
np.random.seed(0)
x0 = np.random.rand(dim)
xstar = np.random.rand(dim)
x0 = xstar + 5. * (x0 - xstar) / np.linalg.norm(x0 - xstar)
A = np.random.rand(dim, dim)
step = 1 / np.linalg.norm(np.dot(A.T, A))
accel = acceleration.regularized_nonlinear(k=5)
solver = solvers.gradient_descent(step=step, accel=accel)
param = {'solver': solver, 'rtol': 0,
'maxit': 200, 'verbosity': 'NONE'}
# L2-norm prox and dummy gradient.
f1 = functions.norm_l2(lambda_=0.5, A=A, y=np.dot(A, xstar))
f2 = functions.dummy()
ret = solvers.solve([f1, f2], x0, **param)
pctdiff = 100 * np.sum((xstar - ret['sol'])**2) / np.sum(xstar**2)
nptest.assert_array_less(pctdiff, 1.91)
# Sanity checks
accel = acceleration.regularized_nonlinear()
self.assertRaises(ValueError, accel.__init__, 10, ['not', 'good'])
self.assertRaises(ValueError, accel.__init__, 10, 'nope')
示例8: test_g_z_relative_error
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_g_z_relative_error():
"""
Test the relative error in computing the g_z component
"""
# Define a single point mass
point_mass = (1, -67, -300.7)
mass = 250
coordinates_p = (0, -39, -13)
# Compute the z component
exact_deriv = point_mass_gravity(
coordinates_p, point_mass, mass, "g_z", "cartesian"
)
# Compute the numerical derivative of potential
delta = 0.1
easting = np.zeros(2) + coordinates_p[0]
northing = np.zeros(2) + coordinates_p[1]
upward = np.array([coordinates_p[2] - delta, coordinates_p[2] + delta])
coordinates = (easting, northing, upward)
potential = point_mass_gravity(
coordinates, point_mass, mass, "potential", "cartesian"
)
# Remember that the ``g_z`` field returns the downward component of the
# gravitational acceleration. As a consequence, the numerical
# derivativative is multiplied by -1.
approximated_deriv = -1e5 * (potential[1] - potential[0]) / (2.0 * delta)
# Compute the relative error
relative_error = np.abs((approximated_deriv - exact_deriv) / exact_deriv)
# Bound value
distance = distance_cartesian(coordinates_p, point_mass)
bound_value = 1.5 * (delta / distance) ** 2
# Compare the results
npt.assert_array_less(relative_error, bound_value)
示例9: test_g_northing_relative_error
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_g_northing_relative_error():
"""
Test the relative error in computing the g_northing component
"""
# Define a single point mass
point_mass = (1, -67, -300.7)
mass = 250
coordinates_p = (0, -39, -13)
# Compute the northing component
exact_deriv = point_mass_gravity(
coordinates_p, point_mass, mass, "g_northing", "cartesian"
)
# Compute the numerical derivative of potential
delta = 0.1
easting = np.zeros(2) + coordinates_p[0]
northing = np.array([coordinates_p[1] - delta, coordinates_p[1] + delta])
upward = np.zeros(2) + coordinates_p[2]
coordinates = (easting, northing, upward)
potential = point_mass_gravity(
coordinates, point_mass, mass, "potential", "cartesian"
)
approximated_deriv = 1e5 * (potential[1] - potential[0]) / (2.0 * delta)
# Compute the relative error
relative_error = np.abs((approximated_deriv - exact_deriv) / exact_deriv)
# Bound value
distance = distance_cartesian(coordinates_p, point_mass)
bound_value = 1.5 * (delta / distance) ** 2
# Compare the results
npt.assert_array_less(relative_error, bound_value)
示例10: test_g_easting_relative_error
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_g_easting_relative_error():
"""
Test the relative error in computing the g_easting component
"""
# Define a single point mass
point_mass = (20, 54, -500.7)
mass = 200
coordinates_p = (-3, 24, -10)
# Compute the easting component
exact_deriv = point_mass_gravity(
coordinates_p, point_mass, mass, "g_easting", "cartesian"
)
# Compute the numerical derivative of potential
delta = 0.1
easting = np.array([coordinates_p[0] - delta, coordinates_p[0] + delta])
northing = np.zeros(2) + coordinates_p[1]
upward = np.zeros(2) + coordinates_p[2]
coordinates = (easting, northing, upward)
potential = point_mass_gravity(
coordinates, point_mass, mass, "potential", "cartesian"
)
approximated_deriv = 1e5 * (potential[1] - potential[0]) / (2.0 * delta)
# Compute the relative error
relative_error = np.abs((approximated_deriv - exact_deriv) / exact_deriv)
# Bound value
distance = distance_cartesian(coordinates_p, point_mass)
bound_value = 1.5 * (delta / distance) ** 2
# Compare the results
npt.assert_array_less(relative_error, bound_value)
示例11: test_array_precession
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def test_array_precession():
"""
Ensures that FK5 coordinates as arrays precess their equinoxes
"""
j2000 = Time('J2000')
j1975 = Time('J1975')
fk5 = FK5([1, 1.1]*u.radian, [0.5, 0.6]*u.radian)
assert fk5.equinox.jyear == j2000.jyear
fk5_2 = fk5.transform_to(FK5(equinox=j1975))
assert fk5_2.equinox.jyear == j1975.jyear
npt.assert_array_less(0.05, np.abs(fk5.ra.degree - fk5_2.ra.degree))
npt.assert_array_less(0.05, np.abs(fk5.dec.degree - fk5_2.dec.degree))
示例12: setUpClass
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def setUpClass(cls):
cls.cell = cell = Cell()
# Lift some degeneracies
cell.atom = '''
C 0.000000000000 0.000000000000 0.000000000000
C 1.67 1.68 1.69
'''
cell.basis = {'C': [[0, (0.8, 1.0)],
[1, (1.0, 1.0)]]}
# cell.basis = 'gth-dzvp'
cell.pseudo = 'gth-pade'
cell.a = '''
0.000000000, 3.370137329, 3.370137329
3.370137329, 0.000000000, 3.370137329
3.370137329, 3.370137329, 0.000000000'''
cell.unit = 'B'
cell.verbose = 5
cell.build()
k = cell.make_kpts([cls.k, 1, 1], scaled_center=cls.k_c)
# K-points
cls.model_krhf = model_krhf = KRHF(cell, k).density_fit()
model_krhf.conv_tol = 1e-14
model_krhf.kernel()
ke = numpy.concatenate(model_krhf.mo_energy)
ke.sort()
# Make sure no degeneracies are present
testing.assert_array_less(1e-4, ke[1:] - ke[:-1])
# TD
cls.td_model_srhf = td_model_srhf = std.TDRHF(model_krhf)
td_model_srhf.kernel()
cls.td_model_krhf = td_model_krhf = ktd.TDRHF(model_krhf)
td_model_krhf.kernel()
# adjust_td_phase(td_model_srhf, td_model_krhf)
# GW
cls.gw = sgw.GW(td_model_srhf)
cls.kgw = kgw.GW(td_model_krhf)
示例13: setUpClass
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_less [as 別名]
def setUpClass(cls):
cls.cell = cell = Cell()
# Lift some degeneracies
cell.atom = '''
C 0.000000000000 0.000000000000 0.000000000000
C 1.67 1.68 1.69
'''
cell.basis = {'C': [[0, (0.8, 1.0)],
[1, (1.0, 1.0)]]}
# cell.basis = 'gth-dzvp'
cell.pseudo = 'gth-pade'
cell.a = '''
0.000000000, 3.370137329, 3.370137329
3.370137329, 0.000000000, 3.370137329
3.370137329, 3.370137329, 0.000000000'''
cell.unit = 'B'
cell.verbose = 5
cell.build()
k = cell.make_kpts([cls.k, 1, 1], scaled_center=cls.k_c)
# The Gamma-point reference
cls.model_rhf = model_rhf = RHF(super_cell(cell, [cls.k, 1, 1]), kpt=k[0]).density_fit()
model_rhf.conv_tol = 1e-14
model_rhf.kernel()
# K-points
cls.model_krhf = model_krhf = KRHF(cell, k).density_fit()
model_krhf.conv_tol = 1e-14
model_krhf.kernel()
adjust_mf_phase(model_rhf, model_krhf)
ke = numpy.concatenate(model_krhf.mo_energy)
ke.sort()
# Make sure mo energies are the same
testing.assert_allclose(model_rhf.mo_energy, ke)
# Make sure no degeneracies are present
testing.assert_array_less(1e-4, ke[1:] - ke[:-1])
cls.ov_order = ov_order(model_krhf)
# The Gamma-point TD
cls.td_model_rhf = td_model_rhf = td.TDRHF(model_rhf)
td_model_rhf.kernel()
cls.ref_m = td_model_rhf.eri.tdhf_full_form()