本文整理匯總了Python中numpy.testing.assert_array_equal方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_array_equal方法的具體用法?Python testing.assert_array_equal怎麽用?Python testing.assert_array_equal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy.testing
的用法示例。
在下文中一共展示了testing.assert_array_equal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_linear_sum_assignment_input_validation
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_linear_sum_assignment_input_validation():
assert_raises(ValueError, linear_sum_assignment, [1, 2, 3])
C = [[1, 2, 3], [4, 5, 6]]
assert_array_equal(linear_sum_assignment(C), linear_sum_assignment(np.asarray(C)))
# assert_array_equal(linear_sum_assignment(C),
# linear_sum_assignment(matrix(C)))
I = np.identity(3)
assert_array_equal(linear_sum_assignment(I.astype(np.bool)), linear_sum_assignment(I))
assert_raises(ValueError, linear_sum_assignment, I.astype(str))
I[0][0] = np.nan
assert_raises(ValueError, linear_sum_assignment, I)
I = np.identity(3)
I[1][1] = np.inf
assert_raises(ValueError, linear_sum_assignment, I)
示例2: test_pickle
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_pickle():
import pickle
a = npc.Array.from_ndarray(arr, [lc, lc_add.conj()])
b = random_Array((20, 15, 10), chinfo2, sort=False)
a.test_sanity()
b.test_sanity()
aflat = a.to_ndarray()
bflat = b.to_ndarray()
data = {'a': a, 'b': b}
stream = pickle.dumps(data)
data2 = pickle.loads(stream)
a2 = data2['a']
b2 = data2['b']
a.test_sanity()
b.test_sanity()
a2.test_sanity()
b2.test_sanity()
a2flat = a2.to_ndarray()
b2flat = b2.to_ndarray()
npt.assert_array_equal(aflat, a2flat)
npt.assert_array_equal(bflat, b2flat)
示例3: test_logsol
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_logsol(self):
# Test conversion tools related to log solar luminosity
from astroNN.gaia import fakemag_to_logsol, absmag_to_logsol, logsol_to_absmag, logsol_to_fakemag
self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(100.)), 100.)
npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol([100., 100.])), [100., 100.])
npt.assert_array_equal(logsol_to_fakemag(fakemag_to_logsol(np.array([100, 100, 100]))), [100., 100., 100.])
self.assertEqual(fakemag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER)
self.assertEqual(logsol_to_fakemag(fakemag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER)
self.assertEqual(np.any(fakemag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True)
self.assertEqual(logsol_to_absmag(absmag_to_logsol(99.)), 99.)
self.assertAlmostEqual(logsol_to_absmag(absmag_to_logsol(-99.)), -99.)
npt.assert_array_equal(logsol_to_absmag(absmag_to_logsol([99., 99.])), [99., 99.])
npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol([-99., -99.])), [-99., -99.])
npt.assert_array_almost_equal(logsol_to_absmag(absmag_to_logsol(np.array([99., 99., 99.]))), [99., 99., 99.])
self.assertEqual(absmag_to_logsol(MAGIC_NUMBER), MAGIC_NUMBER)
self.assertEqual(logsol_to_absmag(absmag_to_logsol(MAGIC_NUMBER)), MAGIC_NUMBER)
self.assertEqual(np.any(absmag_to_logsol([MAGIC_NUMBER, 1000]) == MAGIC_NUMBER), True)
示例4: test_nio_NCFile_variable_append
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_nio_NCFile_variable_append(self):
iobackend.set_backend('Nio')
ncf = iobackend.NCFile(self.ncfaname, mode='a')
nt = self.ncdims['t']
t = ncf.variables['t']
t[nt:] = self.t2
v = ncf.variables['v']
v[nt:, :] = self.v2
ncf.close()
ncfr = Nio.open_file(self.ncfaname)
actual = ncfr.variables['t'][:]
expected = np.concatenate((self.t, self.t2))
print_test_msg('NCVariable append', actual=actual, expected=expected)
npt.assert_array_equal(actual, expected, 'NCFile t-variable incorrect')
actual = ncfr.variables['v'][:]
expected = np.concatenate((self.v, self.v2))
print_test_msg('NCVariable append', actual=actual, expected=expected)
npt.assert_array_equal(
actual, expected, 'NCFile 2d-variable incorrect')
ncfr.close()
示例5: test_nc4_NCFile_variable_append
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_nc4_NCFile_variable_append(self):
iobackend.set_backend('netCDF4')
ncf = iobackend.NCFile(self.ncfaname, mode='a')
nt = self.ncdims['t']
t = ncf.variables['t']
t[nt:] = self.t2
v = ncf.variables['v']
v[nt:, :] = self.v2
ncf.close()
ncfr = Nio.open_file(self.ncfaname)
actual = ncfr.variables['t'][:]
expected = np.concatenate((self.t, self.t2))
print_test_msg('NCVariable append', actual=actual, expected=expected)
npt.assert_array_equal(actual, expected, 'NCFile t-variable incorrect')
actual = ncfr.variables['v'][:]
expected = np.concatenate((self.v, self.v2))
print_test_msg('NCVariable append', actual=actual, expected=expected)
npt.assert_array_equal(
actual, expected, 'NCFile 2d-variable incorrect')
ncfr.close()
示例6: test_distance_mask_grid
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_distance_mask_grid():
"Check that the mask works for grid input"
region = (0, 5, -10, -4)
shape = (7, 6)
east, north = grid_coordinates(region, shape=shape)
coords = {"easting": east[0, :], "northing": north[:, 0]}
data_vars = {"scalars": (["northing", "easting"], np.ones(shape))}
grid = xr.Dataset(data_vars, coords=coords)
masked = distance_mask((2.5, -7.5), maxdist=2, grid=grid)
true = [
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, 1, 1, np.nan, np.nan],
[np.nan, 1, 1, 1, 1, np.nan],
[np.nan, 1, 1, 1, 1, np.nan],
[np.nan, np.nan, 1, 1, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
]
npt.assert_array_equal(true, masked.scalars.values)
示例7: check_pow
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def check_pow(self, lhs, arith1, rhs):
ex = 'lhs {0} rhs'.format(arith1)
expected = self.get_expected_pow_result(lhs, rhs)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
if (np.isscalar(lhs) and np.isscalar(rhs) and
_is_py3_complex_incompat(result, expected)):
self.assertRaises(AssertionError, assert_array_equal, result,
expected)
else:
assert_allclose(result, expected)
ex = '(lhs {0} rhs) {0} rhs'.format(arith1)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = self.get_expected_pow_result(
self.get_expected_pow_result(lhs, rhs), rhs)
assert_allclose(result, expected)
示例8: test_split_streamline
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_split_streamline():
streamlines = dts.Streamlines([np.array([[1.,2.,3.],
[4.,5.,6.]]),
np.array([[7.,8.,9.],
[10.,11.,12.],
[13., 14., 15.]])])
assert streamlines == streamlines
sl_to_split = 1
split_idx = 1
new_streamlines = aus.split_streamline(streamlines, sl_to_split, split_idx)
test_streamlines = dts.Streamlines([np.array([[1., 2., 3.],
[4., 5., 6.]]),
np.array([[7., 8., 9.]]),
np.array([[10., 11., 12.],
[13., 14., 15.]])])
# Test equality of the underlying dict items:
for k in new_streamlines.__dict__.keys():
if isinstance(new_streamlines.__dict__[k], np.ndarray):
npt.assert_array_equal(
new_streamlines.__dict__[k],
test_streamlines.__dict__[k]
)
else:
assert new_streamlines.__dict__[k] == test_streamlines.__dict__[k]
示例9: test_add_bundles
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_add_bundles():
t1 = nib.streamlines.Tractogram(
[np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])])
t2 = nib.streamlines.Tractogram(
[np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])])
added = aus.add_bundles(t1, t2)
test_tgram =nib.streamlines.Tractogram(
[np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]]),
np.array([[0, 0, 0], [0, 0, 0.5], [0, 0, 1], [0, 0, 1.5]]),
np.array([[0, 0, 0], [0, 0.5, 0.5], [0, 1, 1]])])
for sl1, sl2 in zip(added.streamlines, test_tgram.streamlines):
npt.assert_array_equal(sl1, sl2)
示例10: test_gen_xrf_map_const_1
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_gen_xrf_map_const_1():
r"""Successful generation of XRF map"""
element_groups = {"Fe_K": {'area': 800}, "Se_L": {'area': 900}, "W_M": {'area': 1000}}
background_area = 1000
nx, ny = 50, 100
total_area = sum([_["area"] for _ in element_groups.values()])
total_area += background_area
xrf_map, xx = gen_xrf_map_const(element_groups, nx=nx, ny=ny,
incident_energy=12.0, background_area=background_area)
assert xrf_map.shape == (ny, nx, 4096), "Incorrect shape of generated XRF maps"
assert xx.shape == (4096,), "Incorrect shape of energy axis"
npt.assert_array_equal(xrf_map[0, 0, :], xrf_map[1, 1, :],
err_msg="Elements of XRF map are not equal")
npt.assert_almost_equal(np.sum(xrf_map[0, 0, :]), total_area,
err_msg="Area of the generated spectrum does not match the expected value")
# Test generation of XRF map with different size spectrum
xrf_map, xx = gen_xrf_map_const(element_groups, nx=nx, ny=ny, n_spectrum_points=1000,
incident_energy=12.0, background_area=background_area)
assert xrf_map.shape == (ny, nx, 1000), "Incorrect shape of generated XRF maps"
assert xx.shape == (1000,), "Incorrect shape of energy axis"
示例11: test_chunk_numpy_array
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_chunk_numpy_array(chunk_target, data_shape):
"""Basic functionailty tests for '_chunk_xrf_map_numpy"""
data = np.random.random(data_shape)
data_dask = _chunk_numpy_array(data, chunk_target)
chunksize_expected = tuple([
min(chunk_target[0], data_shape[0]),
min(chunk_target[1], data_shape[1]),
*data_shape[2:]])
assert data_dask.shape == data.shape, "The shape of the original and chunked array don't match"
assert data_dask.chunksize == chunksize_expected, \
"The chunk size of the Dask array doesn't match the desired chunk size"
npt.assert_array_equal(data_dask.compute(), data,
err_msg="The chunked array is different from the original array")
示例12: test_bbox_intersection
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_bbox_intersection():
bbox_from_ext = mtrans.Bbox.from_extents
inter = mtrans.Bbox.intersection
from numpy.testing import assert_array_equal as assert_a_equal
def assert_bbox_eq(bbox1, bbox2):
assert_a_equal(bbox1.bounds, bbox2.bounds)
r1 = bbox_from_ext(0, 0, 1, 1)
r2 = bbox_from_ext(0.5, 0.5, 1.5, 1.5)
r3 = bbox_from_ext(0.5, 0, 0.75, 0.75)
r4 = bbox_from_ext(0.5, 1.5, 1, 2.5)
r5 = bbox_from_ext(1, 1, 2, 2)
# self intersection -> no change
assert_bbox_eq(inter(r1, r1), r1)
# simple intersection
assert_bbox_eq(inter(r1, r2), bbox_from_ext(0.5, 0.5, 1, 1))
# r3 contains r2
assert_bbox_eq(inter(r1, r3), r3)
# no intersection
assert_equal(inter(r1, r4), None)
# single point
assert_bbox_eq(inter(r1, r5), bbox_from_ext(1, 1, 1, 1))
示例13: test_dataframe_to_triples
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_dataframe_to_triples():
X = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
schema = [('species', 'has_sepal_length', 'sepal_length')]
npt.assert_array_equal(dataframe_to_triples(X, schema)[0],
np.array(['setosa', 'has_sepal_length', '5.1']))
schema = [('species', 'has_sepal_length', 'abc')]
try:
dataframe_to_triples(X, schema)
except:
assert True
schema = [('species', 'has_sepal_length', 'sepal_length')]
try:
dataframe_to_triples(X, schema)
except:
assert True
示例14: test_dim_dft
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_dim_dft(self):
N = 16
da = xr.DataArray(np.random.rand(N,N), dims=['x','y'],
coords={'x':range(N),'y':range(N)}
)
npt.assert_array_equal(xrft.dft(da, dim='y', shift=False).values,
xrft.dft(da, dim=['y'], shift=False).values
)
assert xrft.dft(da, dim='y').dims == ('x','freq_y')
示例15: test_dft_3d_dask
# 需要導入模塊: from numpy import testing [as 別名]
# 或者: from numpy.testing import assert_array_equal [as 別名]
def test_dft_3d_dask(self, dask):
"""Test the discrete Fourier transform on 3D dask array data"""
N=16
da = xr.DataArray(np.random.rand(N,N,N), dims=['time','x','y'],
coords={'time':range(N),'x':range(N),
'y':range(N)}
)
if dask:
da = da.chunk({'time': 1})
daft = xrft.dft(da, dim=['x','y'], shift=False)
npt.assert_almost_equal(daft.values,
np.fft.fftn(da.chunk({'time': 1}).values,
axes=[1,2])
)
da = da.chunk({'x': 1})
with pytest.raises(ValueError):
xrft.dft(da, dim=['x'])
with pytest.raises(ValueError):
xrft.dft(da, dim='x')
da = da.chunk({'time':N})
daft = xrft.dft(da, dim=['time'],
shift=False, detrend='linear')
da_prime = sps.detrend(da, axis=0)
npt.assert_almost_equal(daft.values,
np.fft.fftn(da_prime, axes=[0])
)
npt.assert_array_equal(daft.values,
xrft.dft(da, dim='time',
shift=False, detrend='linear')
)