本文整理匯總了Python中numpy.take_along_axis方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.take_along_axis方法的具體用法?Python numpy.take_along_axis怎麽用?Python numpy.take_along_axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.take_along_axis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSortIndicesExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testSortIndicesExecution(self):
# only 1 chunk when axis = -1
raw = np.random.rand(100, 10)
x = tensor(raw, chunk_size=10)
r = sort(x, return_index=True)
sr, si = self.executor.execute_tensors(r)
np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1))
x = tensor(raw, chunk_size=(22, 4))
r = sort(x, return_index=True)
sr, si = self.executor.execute_tensors(r)
np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1))
raw = np.random.rand(100)
x = tensor(raw, chunk_size=23)
r = sort(x, axis=0, return_index=True)
sr, si = self.executor.execute_tensors(r)
np.testing.assert_array_equal(sr, raw[si])
示例2: testArgsort
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testArgsort(self):
# only 1 chunk when axis = -1
raw = np.random.rand(100, 10)
x = tensor(raw, chunk_size=10)
xa = argsort(x)
r = self.executor.execute_tensor(xa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1))
x = tensor(raw, chunk_size=(22, 4))
xa = argsort(x)
r = self.executor.execute_tensor(xa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1))
raw = np.random.rand(100)
x = tensor(raw, chunk_size=23)
xa = argsort(x, axis=0)
r = self.executor.execute_tensor(xa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw, axis=0), raw[r])
示例3: testRelativePositionalEmbeddingLayer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testRelativePositionalEmbeddingLayer(self):
with self.session(use_gpu=False):
radius = 3
p = layers.RelativePositionalEmbeddingLayer.Params().Set(
name='rel_position_emb', radius=radius, dim=4)
layer = p.Instantiate()
indices = np.array([-5, -2, 0, 1, 4], dtype=np.int32)
pos_emb = layer.FPropDefaultTheta(tf.convert_to_tensor(indices))
self.evaluate(tf.global_variables_initializer())
actual_pos_emb, full_emb = self.evaluate([pos_emb, layer.vars.w])
clipped_indices = np.vectorize(lambda x: max(-radius, min(radius, x)))(
indices) + radius
expected_output = np.take_along_axis(full_emb,
np.expand_dims(clipped_indices, -1),
0)
print('expected_position_embs:', expected_output)
print('actual_position_embs:', actual_pos_emb)
self.assertAllClose(actual_pos_emb, expected_output)
示例4: testTakeAlongAxis
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testTakeAlongAxis(self, x_shape, i_shape, dtype, axis, rng_factory):
rng = rng_factory()
i_shape = onp.array(i_shape)
if axis is None:
i_shape = [onp.prod(i_shape, dtype=onp.int64)]
else:
# Test the case where the size of the axis doesn't necessarily broadcast.
i_shape[axis] *= 3
i_shape = list(i_shape)
def args_maker():
x = rng(x_shape, dtype)
n = onp.prod(x_shape, dtype=onp.int32) if axis is None else x_shape[axis]
i = rng(i_shape, onp.int32) % (2 * n - 1) - (n - 1)
return x, i
lnp_op = lambda x, i: lnp.take_along_axis(x, i, axis=axis)
if hasattr(onp, "take_along_axis"):
onp_op = lambda x, i: onp.take_along_axis(x, i, axis=axis)
self._CheckAgainstNumpy(lnp_op, onp_op, args_maker, check_dtypes=True)
self._CompileAndCheck(lnp_op, args_maker, check_dtypes=True,
check_incomplete_shape=True)
示例5: cummin
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def cummin(x_val, x_key):
"""Get the cumulative minimum of `x_val` when ranked according to `x_key`.
Parameters
----------
x_val : :class:`numpy:numpy.ndarray` of shape (n, d)
The array to get the cumulative minimum of along axis 0.
x_key : :class:`numpy:numpy.ndarray` of shape (n, d)
The array for ranking elements as to what is the minimum.
Returns
-------
c_min : :class:`numpy:numpy.ndarray` of shape (n, d)
The cumulative minimum array.
"""
assert x_val.shape == x_key.shape
assert x_val.ndim == 2
assert not np.any(np.isnan(x_key)), "cummin not defined for nan key"
n, _ = x_val.shape
xm = np.minimum.accumulate(x_key, axis=0)
idx = np.maximum.accumulate((x_key <= xm) * np.arange(n)[:, None])
c_min = np.take_along_axis(x_val, idx, axis=0)
return c_min
示例6: test_emd
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def test_emd():
x1 = torch.rand(20, 8192, 3).cuda()
x2 = torch.rand(20, 8192, 3).cuda()
emd = emdModule()
start_time = time.perf_counter()
dis, assigment = emd(x1, x2, 0.05, 3000)
print("Input_size: ", x1.shape)
print("Runtime: %lfs" % (time.perf_counter() - start_time))
print("EMD: %lf" % np.sqrt(dis.cpu()).mean())
print("|set(assignment)|: %d" % assigment.unique().numel())
assigment = assigment.cpu().numpy()
assigment = np.expand_dims(assigment, -1)
x2 = np.take_along_axis(x2, assigment, axis = 1)
d = (x1 - x2) * (x1 - x2)
print("Verified EMD: %lf" % np.sqrt(d.cpu().sum(-1)).mean())
#test_emd()
示例7: testPartitionIndicesExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testPartitionIndicesExecution(self):
# only 1 chunk when axis = -1
raw = np.random.rand(100, 10)
x = tensor(raw, chunk_size=10)
kth = [2, 5, 9]
r = partition(x, kth, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])
x = tensor(raw, chunk_size=(22, 4))
r = partition(x, kth, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth])
raw = np.random.rand(100)
x = tensor(raw, chunk_size=23)
r = partition(x, kth, axis=0, return_index=True)
pr, pi = self.executor.execute_tensors(r)
np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1))
np.testing.assert_array_equal(np.sort(raw)[kth], pr[kth])
示例8: testArgpartitionExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testArgpartitionExecution(self):
# only 1 chunk when axis = -1
raw = np.random.rand(100, 10)
x = tensor(raw, chunk_size=10)
kth = [6, 3, 8]
pa = argpartition(x, kth)
r = self.executor.execute_tensor(pa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw)[:, kth], np.take_along_axis(raw, r, axis=-1)[:, kth])
x = tensor(raw, chunk_size=(22, 4))
pa = argpartition(x, kth)
r = self.executor.execute_tensor(pa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw)[:, kth], np.take_along_axis(raw, r, axis=-1)[:, kth])
raw = np.random.rand(100)
x = tensor(raw, chunk_size=23)
pa = argpartition(x, kth, axis=0)
r = self.executor.execute_tensor(pa, concat=True)[0]
np.testing.assert_array_equal(np.sort(raw, axis=0)[kth], raw[r][kth])
示例9: testTopkExecution
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testTopkExecution(self):
raw1, order1 = np.random.rand(5, 6, 7), None
raw2 = np.empty((5, 6, 7), dtype=[('a', np.int32), ('b', np.float64)])
raw2['a'] = np.random.randint(1000, size=(5, 6, 7), dtype=np.int32)
raw2['b'] = np.random.rand(5, 6, 7)
order2 = ['b', 'a']
for raw, order in [(raw1, order1), (raw2, order2)]:
for chunk_size in [7, 4]:
a = tensor(raw, chunk_size=chunk_size)
for axis in [0, 1, 2, None]:
size = raw.shape[axis] if axis is not None else raw.size
for largest in [True, False]:
for to_sort in [True, False]:
for parallel_kind in ['tree', 'psrs']:
for k in [2, size - 2, size, size + 2]:
r = topk(a, k, axis=axis, largest=largest, sorted=to_sort,
order=order, parallel_kind=parallel_kind)
result = self.executor.execute_tensor(r, concat=True)[0]
if not to_sort:
result = self._handle_result(result, axis, largest, order)
expected = self._topk_slow(raw, k, axis, largest, order)
np.testing.assert_array_equal(result, expected)
r = topk(a, k, axis=axis, largest=largest,
sorted=to_sort, order=order,
parallel_kind=parallel_kind,
return_index=True)
ta, ti = self.executor.execute_tensors(r)
raw2 = raw
if axis is None:
raw2 = raw.flatten()
np.testing.assert_array_equal(ta, np.take_along_axis(raw2, ti, axis))
if not to_sort:
ta = self._handle_result(ta, axis, largest, order)
np.testing.assert_array_equal(ta, expected)
示例10: topk
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def topk(input, k, dim, descending=True):
topk_indices = argtopk(input, k, dim, descending)
return np.take_along_axis(input, topk_indices, axis=dim)
示例11: _gather_feat
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def _gather_feat(feat, ind, mask=None):
dim = feat.shape[2]
ind = np.repeat(ind[:, :, np.newaxis], dim, axis=2)
feat = np.take_along_axis(feat, ind, 1)
if mask is not None:
mask = np.expand_dims(mask, 2).reshape(feat.shape)
feat = feat[mask]
feat = feat.reshape(-1, dim)
return feat
示例12: call
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def call(self, x, training=None):
import numpy as np
x_ = x.numpy()
if not is_channels_first(self.data_format):
x_ = x_.transpose((0, 3, 1, 2))
heatmap = x_[:, :-4]
wh = x_[:, -4:-2]
reg = x_[:, -2:]
batch, _, out_h, out_w = heatmap.shape
heatmap_flat = heatmap.reshape((batch, -1))
indices = np.argsort(heatmap_flat)[:, -self.topk:]
scores = np.take_along_axis(heatmap_flat, indices=indices, axis=-1)
topk_classes = (indices // (out_h * out_w)).astype(dtype=np.float32)
topk_indices = indices % (out_h * out_w)
topk_ys = (topk_indices // out_w).astype(dtype=np.float32)
topk_xs = (topk_indices % out_w).astype(dtype=np.float32)
center = reg.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
wh = wh.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
xs = np.take_along_axis(center[:, :, 0], indices=topk_indices, axis=-1)
ys = np.take_along_axis(center[:, :, 1], indices=topk_indices, axis=-1)
topk_xs = topk_xs + xs
topk_ys = topk_ys + ys
w = np.take_along_axis(wh[:, :, 0], indices=topk_indices, axis=-1)
h = np.take_along_axis(wh[:, :, 1], indices=topk_indices, axis=-1)
half_w = 0.5 * w
half_h = 0.5 * h
bboxes = tf.stack((topk_xs - half_w, topk_ys - half_h, topk_xs + half_w, topk_ys + half_h), axis=-1)
bboxes = bboxes * self.scale
topk_classes = tf.expand_dims(topk_classes, axis=-1)
scores = tf.expand_dims(scores, axis=-1)
result = tf.concat((bboxes, topk_classes, scores), axis=-1)
return result
示例13: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def __call__(self, x):
import numpy as np
heatmap = x[:, :-4].array
wh = x[:, -4:-2].array
reg = x[:, -2:].array
batch, _, out_h, out_w = heatmap.shape
heatmap_flat = heatmap.reshape((batch, -1))
indices = np.argsort(heatmap_flat)[:, -self.topk:]
scores = np.take_along_axis(heatmap_flat, indices=indices, axis=-1)
topk_classes = (indices // (out_h * out_w)).astype(dtype=np.float32)
topk_indices = indices % (out_h * out_w)
topk_ys = (topk_indices // out_w).astype(dtype=np.float32)
topk_xs = (topk_indices % out_w).astype(dtype=np.float32)
center = reg.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
wh = wh.transpose((0, 2, 3, 1)).reshape((batch, -1, 2))
xs = np.take_along_axis(center[:, :, 0], indices=topk_indices, axis=-1)
ys = np.take_along_axis(center[:, :, 1], indices=topk_indices, axis=-1)
topk_xs = topk_xs + xs
topk_ys = topk_ys + ys
w = np.take_along_axis(wh[:, :, 0], indices=topk_indices, axis=-1)
h = np.take_along_axis(wh[:, :, 1], indices=topk_indices, axis=-1)
half_w = 0.5 * w
half_h = 0.5 * h
bboxes = F.stack((topk_xs - half_w, topk_ys - half_h, topk_xs + half_w, topk_ys + half_h), axis=-1)
bboxes = bboxes * self.scale
topk_classes = F.expand_dims(topk_classes, axis=-1)
scores = F.expand_dims(scores, axis=-1)
result = F.concat((bboxes, topk_classes, scores), axis=-1)
return result
示例14: __call__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def __call__(self, x):
raw_pre_features = self.backbone(x)
rpn_score = self.navigator_unit(raw_pre_features)
rpn_score.to_cpu()
all_cdds = [np.concatenate((y.reshape(-1, 1), self.edge_anchors.copy()), axis=1)
for y in rpn_score.array]
top_n_cdds = [hard_nms(y, top_n=self.top_n, iou_thresh=0.25) for y in all_cdds]
top_n_cdds = np.array(top_n_cdds)
top_n_index = top_n_cdds[:, :, -1].astype(np.int64)
top_n_index = np.array(top_n_index, dtype=np.int64)
top_n_prob = np.take_along_axis(rpn_score.array, top_n_index, axis=1)
batch = x.shape[0]
x_pad = F.pad(x, pad_width=self.pad_width, mode="constant", constant_values=0)
part_imgs = []
for i in range(batch):
for j in range(self.top_n):
y0, x0, y1, x1 = tuple(top_n_cdds[i][j, 1:5].astype(np.int64))
x_res = F.resize_images(
x_pad[i:i + 1, :, y0:y1, x0:x1],
output_shape=(224, 224))
part_imgs.append(x_res)
part_imgs = F.concat(tuple(part_imgs), axis=0)
part_features = self.backbone_tail(self.backbone(part_imgs))
part_feature = part_features.reshape((batch, self.top_n, -1))
part_feature = part_feature[:, :self.num_cat, :]
part_feature = part_feature.reshape((batch, -1))
raw_features = self.backbone_tail(raw_pre_features)
concat_out = F.concat((part_feature, raw_features), axis=1)
concat_logits = self.concat_net(concat_out)
if self.aux:
raw_logits = self.backbone_classifier(raw_features)
part_logits = self.partcls_net(part_features).reshape((batch, self.top_n, -1))
return concat_logits, raw_logits, part_logits, top_n_prob
else:
return concat_logits
示例15: testTakeAlongAxisIssue1521
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import take_along_axis [as 別名]
def testTakeAlongAxisIssue1521(self):
# https://github.com/google/jax/issues/1521
idx = lnp.repeat(lnp.arange(3), 10).reshape((30, 1))
def f(x):
y = x * lnp.arange(3.).reshape((1, 3))
return lnp.take_along_axis(y, idx, -1).sum()
check_grads(f, (1.,), order=1)