當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.swapaxes方法代碼示例

本文整理匯總了Python中numpy.swapaxes方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.swapaxes方法的具體用法?Python numpy.swapaxes怎麽用?Python numpy.swapaxes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.swapaxes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def update(self, xPhys, u, title=None):
        """Plot to screen"""
        self.im.set_array(-xPhys.reshape((self.nelx, self.nely)).T)
        stress = self.stress_calculator.calculate_stress(xPhys, u, self.nu)
        # self.stress_calculator.calculate_fdiff_stress(xPhys, u, self.nu)
        self.myColorMap.set_norm(colors.Normalize(vmin=0, vmax=max(stress)))
        stress_rgba = self.myColorMap.to_rgba(stress)
        stress_rgba[:, :, 3] = xPhys.reshape(-1, 1)
        self.stress_im.set_array(np.swapaxes(
            stress_rgba.reshape((self.nelx, self.nely, 4)), 0, 1))
        self.fig.canvas.draw()
        self.fig.canvas.flush_events()
        if title is not None:
            plt.title(title)
        else:
            plt.xlabel("Max stress = {:.2f}".format(max(stress)[0]))
        plt.pause(0.01) 
開發者ID:zfergus,項目名稱:fenics-topopt,代碼行數:19,代碼來源:stress_gui.py

示例2: get_data

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def get_data(img_path):
    """get the (1, 3, h, w) np.array data for the supplied image
                Args:
                    img_path (string): the input image path

                Returns:
                    np.array: image data in a (1, 3, h, w) shape

    """
    mean = np.array([123.68, 116.779, 103.939])  # (R,G,B)
    img = Image.open(img_path)
    img = np.array(img, dtype=np.float32)
    reshaped_mean = mean.reshape(1, 1, 3)
    img = img - reshaped_mean
    img = np.swapaxes(img, 0, 2)
    img = np.swapaxes(img, 1, 2)
    img = np.expand_dims(img, axis=0)
    return img 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:image_segmentaion.py

示例3: PreprocessContentImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def PreprocessContentImage(path, long_edge):
    img = io.imread(path)
    logging.info("load the content image, size = %s", img.shape[:2])
    factor = float(long_edge) / max(img.shape[:2])
    new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
    resized_img = transform.resize(img, new_size)
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    logging.info("resize the content image to %s", new_size)
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2])) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:nstyle.py

示例4: PreprocessImage

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def PreprocessImage(path, show_img=False):
    # load image
    img = io.imread(path)
    print("Original Image Shape: ", img.shape)
    # we crop image from center
    short_egde = min(img.shape[:2])
    yy = int((img.shape[0] - short_egde) / 2)
    xx = int((img.shape[1] - short_egde) / 2)
    crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
    # resize to 224, 224
    resized_img = transform.resize(crop_img, (224, 224))
    # convert to numpy.ndarray
    sample = np.asarray(resized_img) * 255
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)

    # sub mean
    return sample

# Get preprocessed batch (single image batch) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:23,代碼來源:mxnet_predict_example.py

示例5: linear_ensemble_strategy

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def linear_ensemble_strategy(self, pred_mean, pred_var, ruitu_inputs, feature_name,\
                            timestep_to_ensemble=21, alpha=1):
        '''
        This stratergy aims to calculate linear weighted at specific timestep (timestep_to_ensemble) between prediction and ruitu as formula:
                                    (alpha)*pred_mean + (1-alpha)*ruitu_inputs
        pred_mean: (10, 37, 3)
        pred_var: (10, 37, 3)
        ruitu_inputs: (37,10,29). Need Swamp to(10,37,29) FIRSTLY!!
        timestep_to_ensemble: int32 (From 0 to 36)
        '''
        assert 0<= alpha <=1, 'Please ensure 0<= alpha <=1 !'
        assert pred_mean.shape == (10, 37, 3), 'Error! This funtion ONLY works for \
        one data sample with shape (10, 37, 3). Any data shape (None, 10, 37, 3) will leads this error!'
        #pred_std = np.sqrt(np.exp(pred_var))           
        ruitu_inputs = np.swapaxes(ruitu_inputs,0,1)
        print('alpha:',alpha)

        pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] = \
        (alpha)*pred_mean[:,timestep_to_ensemble:,self.obs_and_output_feature_index_map[feature_name]] + \
                                (1-alpha)*ruitu_inputs[:,timestep_to_ensemble:, self.ruitu_feature_index_map[feature_name]]  
        print('Corrected pred_mean shape:', pred_mean.shape)
        
        return pred_mean 
開發者ID:BruceBinBoxing,項目名稱:Deep_Learning_Weather_Forecasting,代碼行數:25,代碼來源:competition_model_class.py

示例6: plot_ball_and_alpha

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def plot_ball_and_alpha(alpha, trajectory, filename, cmap='Blues'):
    f, ax = plt.subplots(nrows=1, ncols=2, figsize=[12, 6])
    collection = construct_ball_trajectory(trajectory, r=1., cmap=cmap)

    x_min, y_min = np.min(trajectory, axis=0)
    x_max, y_max = np.max(trajectory, axis=0)

    ax[0].add_collection(collection)
    ax[0].set_xlim([x_min, x_max])
    ax[0].set_ylim([y_min, y_max])
    # ax[0].set_xticks([])
    # ax[0].set_yticks([])
    ax[0].axis("equal")

    for line in np.swapaxes(alpha, 1, 0):
        ax[1].plot(line, linestyle='-')

    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close() 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:21,代碼來源:plotting.py

示例7: save_movies_to_frame

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def save_movies_to_frame(images, filename, cmap='Blues'):
    # Binarize images
    # images[images > 0] = 1.

    # Grid images
    images = np.swapaxes(images, 1, 0)
    images = np.array([combine_multiple_img(image) for image in images])

    # Collect to single image
    image = movie_to_frame(images)

    f = plt.figure(figsize=[12, 12])
    plt.imshow(image, cmap=plt.cm.get_cmap(cmap), interpolation='none', vmin=0, vmax=1)
    plt.axis('image')
    plt.savefig(filename, format='png', bbox_inches='tight', dpi=80)
    plt.close(f) 
開發者ID:simonkamronn,項目名稱:kvae,代碼行數:18,代碼來源:movie.py

示例8: tensor_cnn_frame

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def tensor_cnn_frame(mat, M):
    """Construct a tensor of shape (C x H x W) given an utterance matrix 
    for CNN
    """
    slice_mat = []
    for index in np.arange(len(mat)):
        if index < M:
            to_left = np.tile(mat[index], M).reshape((M,-1))
            rest = mat[index:index+M+1]
            context = np.vstack((to_left, rest))
        elif index >= len(mat)-M:
            to_right = np.tile(mat[index], M).reshape((M,-1))
            rest = mat[index-M:index+1]
            context = np.vstack((rest, to_right))
        else:
            context = mat[index-M:index+M+1]
        slice_mat.append(context)

    slice_mat = np.array(slice_mat)
    slice_mat = np.expand_dims(slice_mat, axis=1)
    slice_mat = np.swapaxes(slice_mat, 2, 3)
    
    return slice_mat 
開發者ID:jefflai108,項目名稱:Attentive-Filtering-Network,代碼行數:25,代碼來源:feat_slicing.py

示例9: tensor_cnngru

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def tensor_cnngru(mat):
    """Construct an utterance tensor for a given utterance matrix mat
    for CNN+GRU
    """
    mat = np.swapaxes(mat, 0, 1)
    div = int(mat.shape[1]/400)
    if div == 0: # short utt
        tensor_mat = mat
        while True:
            shape = tensor_mat.shape[1]
            if shape + mat.shape[1] < 400:
                tensor_mat = np.hstack((tensor_mat,mat))
            else:
                tensor_mat = np.hstack((tensor_mat,mat[:,:400-shape]))
                break
    elif div == 1: # truncate to 1
        tensor_mat = mat[:,:400]
    else:
        # TO DO: cut into 2
        tensor_mat = mat[:,:400]

    tensor_mat = np.expand_dims(tensor_mat, axis=2)
    print(tensor_mat.shape)
    return tensor_mat 
開發者ID:jefflai108,項目名稱:Attentive-Filtering-Network,代碼行數:26,代碼來源:feat_slicing.py

示例10: doperation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def doperation(self, opLabel, flat=False, wrtFilter=None):
        """ Return the derivative of a length-1 (single-gate) sequence """
        dim = self.dim
        gate = self.sos.get_operation(opLabel)
        op_wrtFilter, gpindices = self._process_wrtFilter(wrtFilter, gate)

        # Allocate memory for the final result
        num_deriv_cols = self.Np if (wrtFilter is None) else len(wrtFilter)
        flattened_dprod = _np.zeros((dim**2, num_deriv_cols), 'd')

        _fas(flattened_dprod, [None, gpindices],
             gate.deriv_wrt_params(op_wrtFilter))  # (dim**2, nParams[opLabel])

        if _slct.length(gpindices) > 0:  # works for arrays too
            # Compute the derivative of the entire operation sequence with respect to the
            # gate's parameters and fill appropriate columns of flattened_dprod.
            #gate = self.sos.get_operation[opLabel] UNNEEDED (I think)
            _fas(flattened_dprod, [None, gpindices],
                 gate.deriv_wrt_params(op_wrtFilter))  # (dim**2, nParams in wrtFilter for opLabel)

        if flat:
            return flattened_dprod
        else:
            # axes = (gate_ij, prod_row, prod_col)
            return _np.swapaxes(flattened_dprod, 0, 1).reshape((num_deriv_cols, dim, dim)) 
開發者ID:pyGSTio,項目名稱:pyGSTi,代碼行數:27,代碼來源:matrixforwardsim.py

示例11: setup

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def setup(self):
        self.data = [
                # Array scalars
                (np.array(3.), None),
                (np.array(3), 'f8'),
                # 1D arrays
                (np.arange(6, dtype='f4'), None),
                (np.arange(6), 'c16'),
                # 2D C-layout arrays
                (np.arange(6).reshape(2, 3), None),
                (np.arange(6).reshape(3, 2), 'i1'),
                # 2D F-layout arrays
                (np.arange(6).reshape((2, 3), order='F'), None),
                (np.arange(6).reshape((3, 2), order='F'), 'i1'),
                # 3D C-layout arrays
                (np.arange(24).reshape(2, 3, 4), None),
                (np.arange(24).reshape(4, 3, 2), 'f4'),
                # 3D F-layout arrays
                (np.arange(24).reshape((2, 3, 4), order='F'), None),
                (np.arange(24).reshape((4, 3, 2), order='F'), 'f4'),
                # 3D non-C/F-layout arrays
                (np.arange(24).reshape(2, 3, 4).swapaxes(0, 1), None),
                (np.arange(24).reshape(4, 3, 2).swapaxes(0, 1), '?'),
                     ] 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:26,代碼來源:test_numeric.py

示例12: iswapaxes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def iswapaxes(self, axis1, axis2):
        """Similar as ``np.swapaxes``; in place."""
        axis1 = self.get_leg_index(axis1)
        axis2 = self.get_leg_index(axis2)
        if axis1 == axis2:
            return self  # nothing to do
        swap = np.arange(self.rank, dtype=np.intp)
        swap[axis1], swap[axis2] = axis2, axis1
        legs = self.legs
        legs[axis1], legs[axis2] = legs[axis2], legs[axis1]
        labels = self._labels
        labels[axis1], labels[axis2] = labels[axis2], labels[axis1]
        self._set_shape()
        self._qdata = self._qdata[:, swap]
        self._qdata_sorted = False
        self._data = [t.swapaxes(axis1, axis2) for t in self._data]
        return self 
開發者ID:tenpy,項目名稱:tenpy,代碼行數:19,代碼來源:np_conserved.py

示例13: _rmatvec_forward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def _rmatvec_forward(self, x):
        if not self.reshape:
            x = x.squeeze()
            y = np.zeros(self.N, self.dtype)
            y[:-1] -= x[:-1] / self.sampling
            y[1:] += x[:-1] / self.sampling
        else:
            x = np.reshape(x, self.dims)
            if self.dir > 0:  # need to bring the dim. to derive to first dim.
                x = np.swapaxes(x, self.dir, 0)
            y = np.zeros(x.shape, self.dtype)
            y[:-1] -= x[:-1] / self.sampling
            y[1:] += x[:-1] / self.sampling
            if self.dir > 0:
                y = np.swapaxes(y, 0, self.dir)
            y = y.ravel()
        return y 
開發者ID:equinor,項目名稱:pylops,代碼行數:19,代碼來源:FirstDerivative.py

示例14: _matvec_centered

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def _matvec_centered(self, x):
        if not self.reshape:
            x = x.squeeze()
            y = np.zeros(self.N, self.dtype)
            y[1:-1] = (0.5 * x[2:] - 0.5 * x[0:-2]) / self.sampling
            if self.edge:
                y[0] = (x[1] - x[0]) / self.sampling
                y[-1] = (x[-1] - x[-2]) / self.sampling
        else:
            x = np.reshape(x, self.dims)
            if self.dir > 0:  # need to bring the dim. to derive to first dim.
                x = np.swapaxes(x, self.dir, 0)
            y = np.zeros(x.shape, self.dtype)
            y[1:-1] = (0.5 * x[2:] - 0.5 * x[0:-2]) / self.sampling
            if self.edge:
                y[0] = (x[1] - x[0]) / self.sampling
                y[-1] = (x[-1] - x[-2]) / self.sampling
            if self.dir > 0:
                y = np.swapaxes(y, 0, self.dir)
            y = y.ravel()
        return y 
開發者ID:equinor,項目名稱:pylops,代碼行數:23,代碼來源:FirstDerivative.py

示例15: _rmatvec_backward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import swapaxes [as 別名]
def _rmatvec_backward(self, x):
        if not self.reshape:
            x = x.squeeze()
            y = np.zeros(self.N, self.dtype)
            y[:-1] -= x[1:] / self.sampling
            y[1:] += x[1:] / self.sampling
        else:
            x = np.reshape(x, self.dims)
            if self.dir > 0:  # need to bring the dim. to derive to first dim.
                x = np.swapaxes(x, self.dir, 0)
            y = np.zeros(x.shape, self.dtype)
            y[:-1] -= x[1:] / self.sampling
            y[1:] += x[1:] / self.sampling
            if self.dir > 0:
                y = np.swapaxes(y, 0, self.dir)
            y = y.ravel()
        return y 
開發者ID:equinor,項目名稱:pylops,代碼行數:19,代碼來源:FirstDerivative.py


注:本文中的numpy.swapaxes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。