本文整理匯總了Python中numpy.string方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.string方法的具體用法?Python numpy.string怎麽用?Python numpy.string使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.string方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_bases
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def get_bases(self):
"get bases from SpaceGroup element"
# lattice parameters
bases = []
for elem in self.tree.iter():
if elem.tag == 'SpaceGroup':
for attr in ['AVector', 'BVector', 'CVector']:
basis = elem.attrib[attr] # string
basis = [float(i.strip()) for i in basis.split(',')]
bases.append(basis)
break
bases = np.array(bases)
#set base constant as 1.0
self.bases_const = 1.0
return bases
示例2: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def __init__(self, filename):
"""
Create a Material Studio *.arc file class.
Example:
>>> a = ArcFile("00-05.arc")
Class attributes descriptions
================================================================
Attribute Description
=============== ==============================================
filename string, name of arc file.
coords_iterator generator, yield Cartisan coordinates in
numpy array.
lengths list of float, lengths of lattice axes.
angles list of float, angles of lattice axes.
================ ==============================================
"""
super(ArcFile, self).__init__(filename)
# Set logger.
self.__logger = logging.getLogger("vaspy.ArcFile")
示例3: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def __init__(self, filename='XDATCAR'):
"""
Class to generate XDATCAR objects.
Example:
>>> a = XdatCar()
Class attributes descriptions
=======================================================================
Attribute Description
============ =======================================================
filename string, name of the file the direct coordiante data
stored in
bases_const float, lattice bases constant
bases np.array, bases of POSCAR
natom int, the number of total atom number
atom_types list of strings, atom types
tf list of list, T&F info of atoms
info_nline int, line numbers of lattice info
============ =======================================================
"""
AtomCo.__init__(self, filename)
self.info_nline = 7 # line numbers of lattice info
self.load()
示例4: validate_col
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def validate_col(self, itemsize=None):
""" validate this column: return the compared against itemsize """
# validate this column for string truncation (or reset to the max size)
if _ensure_decoded(self.kind) == u'string':
c = self.col
if c is not None:
if itemsize is None:
itemsize = self.itemsize
if c.itemsize < itemsize:
raise ValueError(
"Trying to store a string with len [{itemsize}] in "
"[{cname}] column but\nthis column has a limit of "
"[{c_itemsize}]!\nConsider using min_itemsize to "
"preset the sizes on these columns".format(
itemsize=itemsize, cname=self.cname,
c_itemsize=c.itemsize))
return c.itemsize
return None
示例5: generate
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def generate(self, where):
""" where can be a : dict,list,tuple,string """
if where is None:
return None
q = self.table.queryables()
try:
return Expr(where, queryables=q, encoding=self.table.encoding)
except NameError:
# raise a nice message, suggesting that the user should use
# data_columns
raise ValueError(
"The passed where expression: {0}\n"
" contains an invalid variable reference\n"
" all of the variable references must be a "
"reference to\n"
" an axis (e.g. 'index' or 'columns'), or a "
"data_column\n"
" The currently defined references are: {1}\n"
.format(where, ','.join(q.keys()))
)
示例6: min
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def min(self):
"""Returns the minimum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if (self.is_quantized or self.base_dtype in
(bool, string, complex64, complex128)):
raise TypeError("Cannot find minimum value of %s." % self)
# there is no simple way to get the min value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype()).min
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype()).min
except:
raise TypeError("Cannot find minimum value of %s." % self)
示例7: max
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def max(self):
"""Returns the maximum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if (self.is_quantized or self.base_dtype in
(bool, string, complex64, complex128)):
raise TypeError("Cannot find maximum value of %s." % self)
# there is no simple way to get the max value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype()).max
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype()).max
except:
raise TypeError("Cannot find maximum value of %s." % self)
示例8: validate_col
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def validate_col(self, itemsize=None):
""" validate this column: return the compared against itemsize """
# validate this column for string truncation (or reset to the max size)
if _ensure_decoded(self.kind) == u('string'):
c = self.col
if c is not None:
if itemsize is None:
itemsize = self.itemsize
if c.itemsize < itemsize:
raise ValueError(
"Trying to store a string with len [%s] in [%s] "
"column but\nthis column has a limit of [%s]!\n"
"Consider using min_itemsize to preset the sizes on "
"these columns" % (itemsize, self.cname, c.itemsize))
return c.itemsize
return None
示例9: min
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def min(self):
"""Returns the minimum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if self.is_quantized or self.base_dtype in (
bool,
string,
complex64,
complex128,
):
raise TypeError("Cannot find minimum value of %s." % self)
# there is no simple way to get the min value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype).min
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype).min
except:
if self.base_dtype == bfloat16:
return _np_bfloat16(float.fromhex("-0x1.FEp127"))
raise TypeError("Cannot find minimum value of %s." % self)
示例10: max
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def max(self):
"""Returns the maximum representable value in this data type.
Raises:
TypeError: if this is a non-numeric, unordered, or quantized type.
"""
if self.is_quantized or self.base_dtype in (
bool,
string,
complex64,
complex128,
):
raise TypeError("Cannot find maximum value of %s." % self)
# there is no simple way to get the max value of a dtype, we have to check
# float and int types separately
try:
return np.finfo(self.as_numpy_dtype).max
except: # bare except as possible raises by finfo not documented
try:
return np.iinfo(self.as_numpy_dtype).max
except:
if self.base_dtype == bfloat16:
return _np_bfloat16(float.fromhex("0x1.FEp127"))
raise TypeError("Cannot find maximum value of %s." % self)
示例11: get_name_info
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def get_name_info(self):
"""
獲取文件中能量,力等數據.
"""
# Get info string.
info = None
for elem in self.tree.iter("SymmetrySystem"):
info = elem.attrib.get('Name')
break
if info is None:
return
# Get thermo data.
fieldnames = ["energy", "force", "magnetism", "path"]
try:
for key, value in zip(fieldnames, info.split()):
if key != "path":
data = float(value.split(':')[-1].strip())
else:
data = value.split(":")[-1].strip()
setattr(self, key, data)
except:
# Set default values.
self.force, self.energy, self.magnetism = 0.0, 0.0, 0.0
msg = "No data info in Name property '{}'".format(info)
self.__logger.warning(msg)
finally:
self.path = getcwd()
示例12: update_bases
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def update_bases(self):
"update bases value in ElementTree"
bases = self.bases.tolist()
bases_str = []
# float -> string
for basis in bases:
xyz = ','.join([str(v) for v in basis]) # vector string
bases_str.append(xyz)
for elem in self.tree.iter('SpaceGroup'):
elem.set('AVector', bases_str[0])
elem.set('BVector', bases_str[1])
elem.set('CVector', bases_str[2])
break
示例13: load
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def load(self, content_list):
""" Load all data in xyz file.
"""
# Total number of all atoms.
natom = int(content_list[0].strip())
# The iteration step for this xyz file.
step = int(str2list(content_list[1])[-1])
# Get atom coordinate and number info
data_list = [str2list(line) for line in content_list[2:]]
data_array = np.array(data_list) # dtype=np.string
atoms_list = list(data_array[:, 0]) # 1st column
data = np.float64(data_array[:, 1:]) # rest columns
# Atom number for each atom
atom_types = []
for atom in atoms_list:
if atom not in atom_types:
atom_types.append(atom)
atom_numbers = [atoms_list.count(atom) for atom in atom_types]
# Set attributes.
self.natom = natom
self.step = step
self.atom_types = atom_types
self.atom_numbers = atom_numbers
self.data = data
示例14: _ensure_str
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def _ensure_str(name):
"""Ensure that an index / column name is a str (python 3) or
unicode (python 2); otherwise they may be np.string dtype.
Non-string dtypes are passed through unchanged.
https://github.com/pandas-dev/pandas/issues/13492
"""
if isinstance(name, compat.string_types):
name = compat.text_type(name)
return name
示例15: maybe_set_size
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import string [as 別名]
def maybe_set_size(self, min_itemsize=None):
""" maybe set a string col itemsize:
min_itemsize can be an integer or a dict with this columns name
with an integer size """
if _ensure_decoded(self.kind) == u'string':
if isinstance(min_itemsize, dict):
min_itemsize = min_itemsize.get(self.name)
if min_itemsize is not None and self.typ.itemsize < min_itemsize:
self.typ = _tables(
).StringCol(itemsize=min_itemsize, pos=self.pos)