本文整理匯總了Python中numpy.str方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.str方法的具體用法?Python numpy.str怎麽用?Python numpy.str使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.str方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write_param
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def write_param(self, xml_filename='gap.xml'):
"""
Write xml file to perform lammps calculation.
Args:
xml_filename (str): Filename to store xml formatted parameters.
"""
if not self.param:
raise RuntimeError("The xml and parameters should be provided.")
tree = self.param.get('xml')
root = tree.getroot()
gpcoordinates = list(root.iter('gpCoordinates'))[0]
param_filename = "{}.soapparam".format(self.name)
gpcoordinates.set('sparseX_filename', param_filename)
np.savetxt(param_filename, self.param.get('param'), fmt='%.20e')
tree.write(xml_filename)
pair_coeff = self.pair_coeff.format(xml_filename,
'\"Potential xml_label={}\"'.
format(self.param.get('potential_label')),
self.specie.Z)
ff_settings = [self.pair_style, pair_coeff]
return ff_settings
示例2: tensor2state
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def tensor2state(tensor_frd, tensor_emy):
'''
transform tensor 2 state
tensor_frd, tensor_emy ndarray [9,10,16]
return state ndarray [10,9]
'''
assert tensor_frd.shape == tensor_emy.shape
state = np.zeros((10,9), dtype=np.str)
chessfrdplayer = 'KAABBNNRRCCPPPPP'
chessemyplayer = 'kaabbnnrrccppppp'
for i in range(tensor_frd.shape[0]):
for j in range(tensor_frd.shape[1]):
if ~(tensor_frd[i][j] == 0).all():
layer = np.argmax(tensor_frd[i][j])
state[j][i] = chessfrdplayer[layer]
elif ~(tensor_emy[i][j] == 0).all():
layer = np.argmax(tensor_emy[i][j])
state[j][i] = chessemyplayer[layer]
else:
state[j][i] = ' '
return state
示例3: compat_as_text
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def compat_as_text(str_):
"""Converts strings into `unicode` (Python 2) or `str` (Python 3).
Args:
str\_: A string or other data types convertible to string, or an
`n`-D numpy array or (possibly nested) list of such elements.
Returns:
The converted strings of the same structure/shape as :attr:`str_`.
"""
def _recur_convert(s):
if isinstance(s, (list, tuple, np.ndarray)):
s_ = [_recur_convert(si) for si in s]
return _maybe_list_to_array(s_, s)
else:
try:
return tf.compat.as_text(s)
except TypeError:
return tf.compat.as_text(str(s))
text = _recur_convert(str_)
return text
示例4: load_annoataion
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def load_annoataion(p):
'''
load annotation from the text file
:param p:
:return:
'''
text_polys = []
text_tags = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32)
with open(p, 'r') as f:
reader = csv.reader(f)
for line in reader:
label = 'text'
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
text_polys.append([x1, y1, x2, y2, x3, y3, x4, y4])
text_tags.append(label)
return np.array(text_polys, dtype=np.int32), np.array(text_tags, dtype=np.str)
示例5: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def __init__(
self,
save_path: str = "data/",
genes_to_keep: Optional[List[str]] = None,
total_genes: Optional[int] = 558,
delayed_populating: bool = False,
):
self.genes_to_keep = genes_to_keep
self.total_genes = total_genes
self.precise_labels = None
super().__init__(
urls="https://storage.googleapis.com/linnarsson-lab-www-blobs/blobs"
"/cortex/expression_mRNA_17-Aug-2014.txt",
filenames="expression.bin",
save_path=save_path,
delayed_populating=delayed_populating,
)
示例6: find_path_to_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def find_path_to_data(self) -> Tuple[str, str]:
"""Returns exact path for the data in the archive.
This is required because 10X doesn't have a consistent way of storing their data.
Additionally, the function returns whether the data is stored in compressed format.
Returns
-------
path in which files are contains and their suffix if compressed.
"""
for root, subdirs, files in os.walk(self.save_path):
# do not consider hidden files
files = [f for f in files if not f[0] == "."]
contains_mat = [
filename == "matrix.mtx" or filename == "matrix.mtx.gz"
for filename in files
]
contains_mat = np.asarray(contains_mat).any()
if contains_mat:
is_tar = files[0][-3:] == ".gz"
suffix = ".gz" if is_tar else ""
return root, suffix
raise FileNotFoundError(
"No matrix.mtx(.gz) found in path (%s)." % self.save_path
)
示例7: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def __init__(
self,
name: str = "cbmc",
save_path: str = "data/citeSeq/",
delayed_populating: bool = False,
):
s = available_datasets[name]
filenames = CiteSeqFilenames(
rna="%s_rna.csv.gz" % name,
adt="%s_adt.csv.gz" % name,
adt_centered="%s_adt_centered.csv.gz" % name,
)
super().__init__(
urls=[
"ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE100nnn/GSE100866/suppl/GSE100866_%s-RNA_umi.csv.gz"
% s,
"ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE100nnn/GSE100866/suppl/GSE100866_%s-ADT_umi.csv.gz"
% s,
"ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE100nnn/GSE100866/suppl/"
"GSE100866_%s-ADT_clr-transformed.csv.gz" % s,
],
filenames=filenames,
save_path=os.path.join(save_path, name),
delayed_populating=delayed_populating,
)
示例8: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def __init__(
self, save_path: str = "data/HEMATO/", delayed_populating: bool = False
):
self.gene_names_filename = "bBM.filtered_gene_list.paper.txt"
self.spring_and_pba_filename = "bBM.spring_and_pba.csv"
self.cell_types_levels = [
"Erythroid",
"Granulocytic Neutrophil",
"Lymphocytic",
"Dendritic",
"Megakaryocytic",
"Monocytic",
"Basophilic",
]
super().__init__(
urls=[
"https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSM2388072&format=file&"
"file=GSM2388072%5Fbasal%5Fbone%5Fmarrow%2Eraw%5Fumifm%5Fcounts%2Ecsv%2Egz",
"https://github.com/romain-lopez/scVI-reproducibility/raw/master/additional/data.zip",
],
filenames=["bBM.raw_umifm_counts.csv.gz", "data.zip"],
save_path=save_path,
delayed_populating=delayed_populating,
)
示例9: __init__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def __init__(
self,
mu: float = 4.0,
theta: float = 2.0,
dropout: float = 0.7,
save_path: str = "data/",
):
self.mu = mu
self.theta = theta
self.dropout = dropout
self.simlr_metadata = None
super().__init__(
urls="https://github.com/YosefLab/scVI-data/raw/master/random_metadata.pickle",
filenames=SyntheticRandomDataset.FILENAME,
save_path=save_path,
)
示例10: remap_categorical_attributes
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def remap_categorical_attributes(
self, attributes_to_remap: Optional[List[str]] = None
):
if attributes_to_remap is None:
attributes_to_remap = self.cell_categorical_attribute_names
for attribute_name in attributes_to_remap:
logger.info("Remapping %s to [0,N]" % attribute_name)
attr = getattr(self, attribute_name)
mappings_dict = {
name: getattr(self, name)
for name in self.attribute_mappings[attribute_name]
}
new_attr, _, new_mappings_dict = remap_categories(
attr, mappings_dict=mappings_dict
)
setattr(self, attribute_name, new_attr)
for name, mapping in new_mappings_dict.items():
setattr(self, name, mapping)
示例11: collate_fn_base
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def collate_fn_base(
self, attributes_and_types: Dict[str, type], batch: Union[List[int], np.ndarray]
) -> Tuple[torch.Tensor, ...]:
"""Given indices and attributes to batch, returns a full batch of ``Torch.Tensor``
"""
indices = np.asarray(batch)
data_numpy = [
getattr(self, attr)[indices].astype(dtype)
if isinstance(getattr(self, attr), np.ndarray)
else getattr(self, attr)[indices].toarray().astype(dtype)
for attr, dtype in attributes_and_types.items()
]
data_torch = tuple(torch.from_numpy(d) for d in data_numpy)
return data_torch
#############################
# #
# GENE FILTERING #
# #
#############################
示例12: genes_to_index
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def genes_to_index(
self, genes: Union[List[str], List[int], np.ndarray], on: str = None
):
"""Returns the index of a subset of genes, given their ``on`` attribute in ``genes``.
If integers are passed in ``genes``, the function returns ``genes``.
If ``on`` is None, it defaults to ``gene_names``.
"""
if type(genes[0]) is not int:
on = "gene_names" if on is None else on
genes_idx = [np.where(getattr(self, on) == gene)[0][0] for gene in genes]
else:
genes_idx = genes
return np.asarray(genes_idx, dtype=np.int64)
#############################
# #
# CELL FILTERING #
# #
#############################
示例13: filter_cell_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def filter_cell_types(self, cell_types: Union[List[str], List[int], np.ndarray]):
"""Performs in-place filtering of cells by keeping cell types in ``cell_types``.
Parameters
----------
cell_types
numpy array of type np.int (indices) or np.str (cell-types names)
"""
cell_types = np.asarray(cell_types)
if isinstance(cell_types[0], str):
labels_to_keep = self.cell_types_to_labels(cell_types)
elif isinstance(cell_types[0], (int, np.integer)):
labels_to_keep = cell_types
else:
raise ValueError(
"Wrong dtype for cell_types. Should be either str or int (labels)."
)
subset_cells = self._get_cells_filter_mask_by_attribute(
attribute_name="labels",
attribute_values_to_keep=labels_to_keep,
return_data=False,
)
self.update_cells(subset_cells)
示例14: map_cell_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def map_cell_types(
self,
cell_types_dict: Dict[Union[int, str, Tuple[int, ...], Tuple[str, ...]], str],
):
"""Performs in-place filtering of cells using a cell type mapping.
Cell types in the keys of ``cell_types_dict`` are merged and given the name of the associated value
Parameters
----------
cell_types_dict
dictionary with tuples of cell types to merge as keys
and new cell type names as values.
"""
for cell_types, new_cell_type_name in cell_types_dict.items():
self.merge_cell_types(cell_types, new_cell_type_name)
示例15: reorder_cell_types
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import str [as 別名]
def reorder_cell_types(self, new_order: Union[List[str], np.ndarray]):
"""Reorder in place the cell-types. The cell-types provided will be added at the beginning of `cell_types`
attribute, such that if some existing cell-types are omitted in `new_order`, they will be left after the
new given order
"""
if isinstance(new_order, np.ndarray):
new_order = new_order.tolist()
for cell_type in self.cell_types:
if cell_type not in new_order:
new_order.append(cell_type)
cell_types = OrderedDict([((x,), x) for x in new_order])
self.map_cell_types(cell_types)
self.remap_categorical_attributes(["labels"])
#############################
# #
# MISC. #
# #
#############################