當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.square方法代碼示例

本文整理匯總了Python中numpy.square方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.square方法的具體用法?Python numpy.square怎麽用?Python numpy.square使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.square方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: reward

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def reward(tsptw_sequence,speed):
    # Convert sequence to tour (end=start)
    tour = np.concatenate((tsptw_sequence,np.expand_dims(tsptw_sequence[0],0)))
    # Compute tour length
    inter_city_distances = np.sqrt(np.sum(np.square(tour[:-1,:2]-tour[1:,:2]),axis=1))
    distance = np.sum(inter_city_distances)
    # Compute develiry times at each city and count late cities
    elapsed_time = -10
    late_cities = 0
    for i in range(tsptw_sequence.shape[0]-1):
        travel_time = inter_city_distances[i]/speed
        tw_open = tour[i+1,2]
        tw_close = tour[i+1,3]
        elapsed_time += travel_time
        if elapsed_time <= tw_open:
            elapsed_time = tw_open
        elif elapsed_time > tw_close:
            late_cities += 1
    # Reward
    return distance + 100000000*late_cities

# Swap city[i] with city[j] in sequence 
開發者ID:MichelDeudon,項目名稱:neural-combinatorial-optimization-rl-tensorflow,代碼行數:24,代碼來源:dataset.py

示例2: pred_test

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def pred_test(testing_data, exe, param_list=None, save_path=""):
    ret = numpy.zeros((testing_data.shape[0], 2))
    if param_list is None:
        for i in range(testing_data.shape[0]):
            exe.arg_dict['data'][:] = testing_data[i, 0]
            exe.forward(is_train=False)
            ret[i, 0] = exe.outputs[0].asnumpy()
            ret[i, 1] = numpy.exp(exe.outputs[1].asnumpy())
        numpy.savetxt(save_path, ret)
    else:
        for i in range(testing_data.shape[0]):
            pred = numpy.zeros((len(param_list),))
            for j in range(len(param_list)):
                exe.copy_params_from(param_list[j])
                exe.arg_dict['data'][:] = testing_data[i, 0]
                exe.forward(is_train=False)
                pred[j] = exe.outputs[0].asnumpy()
            ret[i, 0] = pred.mean()
            ret[i, 1] = pred.std()**2
        numpy.savetxt(save_path, ret)
    mse = numpy.square(ret[:, 0] - testing_data[:, 0] **3).mean()
    return mse, ret 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:utils.py

示例3: preprocess_sample_normalize

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def preprocess_sample_normalize(self, threadIndex, audio_paths, overwrite, return_dict):
        if len(audio_paths) > 0:
            audio_clip = audio_paths[0]
            feat = self.featurize(audio_clip=audio_clip, overwrite=overwrite)
            feat_squared = np.square(feat)
            count = float(feat.shape[0])
            dim = feat.shape[1]
            if len(audio_paths) > 1:
                for audio_path in audio_paths[1:]:
                    next_feat = self.featurize(audio_clip=audio_path, overwrite=overwrite)
                    next_feat_squared = np.square(next_feat)
                    feat_vertically_stacked = np.concatenate((feat, next_feat)).reshape(-1, dim)
                    feat = np.sum(feat_vertically_stacked, axis=0, keepdims=True)
                    feat_squared_vertically_stacked = np.concatenate(
                        (feat_squared, next_feat_squared)).reshape(-1, dim)
                    feat_squared = np.sum(feat_squared_vertically_stacked, axis=0, keepdims=True)
                    count += float(next_feat.shape[0])
            return_dict[threadIndex] = {'feat': feat, 'feat_squared': feat_squared, 'count': count} 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:20,代碼來源:stt_datagenerator.py

示例4: test_ndarray_elementwise

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def test_ndarray_elementwise():
    np.random.seed(0)
    nrepeat = 10
    maxdim = 4
    all_type = [np.float32, np.float64, np.float16, np.uint8, np.int32]
    real_type = [np.float32, np.float64, np.float16]
    for repeat in range(nrepeat):
        for dim in range(1, maxdim):
            check_with_uniform(lambda x, y: x + y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x - y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x * y, 2, dim, type_list=all_type)
            check_with_uniform(lambda x, y: x / y, 2, dim, type_list=real_type)
            check_with_uniform(lambda x, y: x / y, 2, dim, rmin=1, type_list=all_type)
            check_with_uniform(mx.nd.sqrt, 1, dim, np.sqrt, rmin=0)
            check_with_uniform(mx.nd.square, 1, dim, np.square, rmin=0)
            check_with_uniform(lambda x: mx.nd.norm(x).asscalar(), 1, dim, np.linalg.norm) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:18,代碼來源:profiler_ndarray.py

示例5: test_broadcast

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def test_broadcast():
    sample_num = 1000

    def test_broadcast_to():
        for i in range(sample_num):
            ndim = np.random.randint(1, 6)
            target_shape = np.random.randint(1, 11, size=ndim)
            shape = target_shape.copy()
            axis_flags = np.random.randint(0, 2, size=ndim)
            axes = []
            for (axis, flag) in enumerate(axis_flags):
                if flag:
                    shape[axis] = 1
            dat = np.random.rand(*shape) - 0.5
            numpy_ret = dat
            ndarray_ret = mx.nd.array(dat).broadcast_to(shape=target_shape)
            if type(ndarray_ret) is mx.ndarray.NDArray:
                ndarray_ret = ndarray_ret.asnumpy()
            assert (ndarray_ret.shape == target_shape).all()
            err = np.square(ndarray_ret - numpy_ret).mean()
            assert err < 1E-8
    test_broadcast_to() 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:profiler_ndarray.py

示例6: test_square

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def test_square():
    input1 = np.random.randint(1, 10, (2, 3)).astype("float32")

    ipsym = mx.sym.Variable("input1")
    square = mx.sym.square(data=ipsym)
    model = mx.mod.Module(symbol=square, data_names=['input1'], label_names=None)
    model.bind(for_training=False, data_shapes=[('input1', np.shape(input1))], label_shapes=None)
    model.init_params()

    args, auxs = model.get_params()
    params = {}
    params.update(args)
    params.update(auxs)

    converted_model = onnx_mxnet.export_model(square, params, [np.shape(input1)], np.float32, "square.onnx")

    sym, arg_params, aux_params = onnx_mxnet.import_model(converted_model)
    result = forward_pass(sym, arg_params, aux_params, ['input1'], input1)

    numpy_op = np.square(input1)

    npt.assert_almost_equal(result, numpy_op) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:mxnet_export_test.py

示例7: adjacencyToLaplacian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def adjacencyToLaplacian(W):
    """
    adjacencyToLaplacian: Computes the Laplacian from an Adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        L (np.array): Laplacian matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # And build the degree matrix
    D = np.diag(d)
    # Return the Laplacian
    return D - W 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:22,代碼來源:graphTools.py

示例8: normalizeAdjacency

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def normalizeAdjacency(W):
    """
    NormalizeAdjacency: Computes the degree-normalized adjacency matrix

    Input:

        W (np.array): adjacency matrix

    Output:

        A (np.array): degree-normalized adjacency matrix
    """
    # Check that the matrix is square
    assert W.shape[0] == W.shape[1]
    # Compute the degree vector
    d = np.sum(W, axis = 1)
    # Invert the square root of the degree
    d = 1/np.sqrt(d)
    # And build the square root inverse degree matrix
    D = np.diag(d)
    # Return the Normalized Adjacency
    return D @ W @ D 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:24,代碼來源:graphTools.py

示例9: normalizeLaplacian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def normalizeLaplacian(L):
    """
    NormalizeLaplacian: Computes the degree-normalized Laplacian matrix

    Input:

        L (np.array): Laplacian matrix

    Output:

        normL (np.array): degree-normalized Laplacian matrix
    """
    # Check that the matrix is square
    assert L.shape[0] == L.shape[1]
    # Compute the degree vector (diagonal elements of L)
    d = np.diag(L)
    # Invert the square root of the degree
    d = 1/np.sqrt(d)
    # And build the square root inverse degree matrix
    D = np.diag(d)
    # Return the Normalized Laplacian
    return D @ L @ D 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:24,代碼來源:graphTools.py

示例10: _gripper_visualization

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def _gripper_visualization(self):
        """
        Do any needed visualization here. Overrides superclass implementations.
        """

        # color the gripper site appropriately based on distance to cube
        if self.gripper_visualization:
            # get distance to cube
            cube_site_id = self.sim.model.site_name2id("cube")
            dist = np.sum(
                np.square(
                    self.sim.data.site_xpos[cube_site_id]
                    - self.sim.data.get_site_xpos("grip_site")
                )
            )

            # set RGBA for the EEF site here
            max_dist = 0.1
            scaled = (1.0 - min(dist / max_dist, 1.)) ** 15
            rgba = np.zeros(4)
            rgba[0] = 1 - scaled
            rgba[1] = scaled
            rgba[3] = 0.5

            self.sim.model.site_rgba[self.eef_site_id] = rgba 
開發者ID:StanfordVL,項目名稱:robosuite,代碼行數:27,代碼來源:sawyer_lift.py

示例11: SpectralClustering

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def SpectralClustering(CKSym, n):
    # This is direct port of JHU vision lab code. Could probably use sklearn SpectralClustering.
    CKSym = CKSym.astype(float)
    N, _ = CKSym.shape
    MAXiter = 1000  # Maximum number of iterations for KMeans
    REPlic = 20  # Number of replications for KMeans

    DN = np.diag(np.divide(1, np.sqrt(np.sum(CKSym, axis=0) + np.finfo(float).eps)))
    LapN = identity(N).toarray().astype(float) - np.matmul(np.matmul(DN, CKSym), DN)
    _, _, vN = np.linalg.svd(LapN)
    vN = vN.T
    kerN = vN[:, N - n:N]
    normN = np.sqrt(np.sum(np.square(kerN), axis=1))
    kerNS = np.divide(kerN, normN.reshape(len(normN), 1) + np.finfo(float).eps)
    km = KMeans(n_clusters=n, n_init=REPlic, max_iter=MAXiter, n_jobs=-1).fit(kerNS)
    return km.labels_ 
開發者ID:abhinav4192,項目名稱:sparse-subspace-clustering-python,代碼行數:18,代碼來源:SpectralClustering.py

示例12: find_errors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def find_errors(gt_pose, final_pose):
	# Simple euler distand between translation part.
	gt_position = gt_pose[0:3]				
	predicted_position = final_pose[0:3]
	translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position)))

	# Convert euler angles rotation matrix.
	gt_euler = gt_pose[3:6]
	pt_euler = final_pose[3:6]
	gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx')
	pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx')

	# Multiply inverse of one rotation matrix with another rotation matrix.
	error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat))
	_,angle = transforms3d.axangles.mat2axangle(error_mat)			# Convert matrix to axis angle representation and that angle is error.
	return translation_error, abs(angle*(180/np.pi))

# Store all the results.
# if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:21,代碼來源:test_icp.py

示例13: find_errors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def find_errors(self, gt_pose, final_pose):
		import transforms3d
		gt_position = gt_pose[0,0:3]
		predicted_position = final_pose[0,0:3]

		translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position)))
		print("Translation Error: {}".format(translation_error))

		gt_euler = gt_pose[0,3:6]
		pt_euler = final_pose[0,3:6]

		gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx')
		pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx')

		error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat))
		_,angle = transforms3d.axangles.mat2axangle(error_mat)
		print("Rotation Error: {}".format(abs(angle*(180/np.pi))))
		return translation_error, angle*(180/np.pi) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:20,代碼來源:helper_analysis.py

示例14: find_errors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def find_errors(gt_pose, final_pose):
	# Simple euler distand between translation part.
	gt_position = gt_pose[0:3]				
	predicted_position = final_pose[0:3]
	translation_error = np.sqrt(np.sum(np.square(gt_position - predicted_position)))

	# Convert euler angles rotation matrix.
	gt_euler = gt_pose[3:6]
	pt_euler = final_pose[3:6]
	gt_mat = t3d.euler2mat(gt_euler[2],gt_euler[1],gt_euler[0],'szyx')
	pt_mat = t3d.euler2mat(pt_euler[2],pt_euler[1],pt_euler[0],'szyx')

	# Multiply inverse of one rotation matrix with another rotation matrix.
	error_mat = np.dot(pt_mat,np.linalg.inv(gt_mat))
	_,angle = transforms3d.axangles.mat2axangle(error_mat)			# Convert matrix to axis angle representation and that angle is error.
	return translation_error, abs(angle*(180/np.pi)) 
開發者ID:vinits5,項目名稱:pointnet-registration-framework,代碼行數:18,代碼來源:results_itrPCRNet.py

示例15: _pdist

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import square [as 別名]
def _pdist(a, b):
    """Compute pair-wise squared distance between points in `a` and `b`.

    Parameters
    ----------
    a : array_like
        An NxM matrix of N samples of dimensionality M.
    b : array_like
        An LxM matrix of L samples of dimensionality M.

    Returns
    -------
    ndarray
        Returns a matrix of size len(a), len(b) such that eleement (i, j)
        contains the squared distance between `a[i]` and `b[j]`.

    """
    a, b = np.asarray(a), np.asarray(b)
    if len(a) == 0 or len(b) == 0:
        return np.zeros((len(a), len(b)))
    a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
    r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
    r2 = np.clip(r2, 0., float(np.inf))
    return r2 
開發者ID:nwojke,項目名稱:deep_sort,代碼行數:26,代碼來源:nn_matching.py


注:本文中的numpy.square方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。