本文整理匯總了Python中numpy.size方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.size方法的具體用法?Python numpy.size怎麽用?Python numpy.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.size方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: draw_boxes_frame
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def draw_boxes_frame(frame, frame_size, boxes_dicts, class_names, input_size):
"""Draws detected boxes in a video frame"""
boxes_dict = boxes_dicts[0]
resize_factor = (frame_size[0] / input_size[1], frame_size[1] / input_size[0])
for cls in range(len(class_names)):
boxes = boxes_dict[cls]
color = (0, 0, 255)
if np.size(boxes) != 0:
for box in boxes:
xy = box[:4]
xy = [int(xy[i] * resize_factor[i % 2]) for i in range(4)]
cv2.rectangle(frame, (xy[0], xy[1]), (xy[2], xy[3]), color[::-1], 2)
(test_width, text_height), baseline = cv2.getTextSize(class_names[cls],
cv2.FONT_HERSHEY_SIMPLEX,
0.75, 1)
cv2.rectangle(frame,
(xy[0], xy[1]),
(xy[0] + test_width, xy[1] - text_height - baseline),
color[::-1],
thickness=cv2.FILLED)
cv2.putText(frame, class_names[cls], (xy[0], xy[1] - baseline), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
示例2: initialize
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def initialize(context, eps = 10, window_length = 50):
#init
context.stocks = STOCKS
context.sids = SIDS
#context.sids = [context.symbol(symb) for symb in context.stocks]
context.m = np.size(STOCKS)
context.price = {}
context.b_t = np.ones(context.m)/float(context.m)
context.prev_weights = np.ones(context.m)/float(context.m)
context.eps = eps
context.init = True
context.days = 0
context.window_length = window_length
add_history(window_length, '1d', 'price')
#set commision and slippage
#context.set_commision(commission.PerShare(cost=0))
#context.set_slippage(slippage.VolumeShareSlippage(volume_limit=0.25, price_impact=0.1))
示例3: analyze
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def analyze(context=None, results=None):
f, (ax1, ax2, ax3) = plt.subplots(3, sharex = True)
ax1.plot(results.portfolio_value, linewidth = 2.0, label = 'porfolio')
ax1.set_title('On-Line Moving Average Reversion')
ax1.set_ylabel('Portfolio value (USD)')
ax1.legend(loc=0)
ax1.grid(True)
ax2.plot(results['AAPL'], color = 'b', linestyle = '-', linewidth = 2.0, label = 'AAPL')
ax2.plot(results['MSFT'], color = 'r', linestyle = '-', linewidth = 2.0, label = 'MSFT')
ax2.set_ylabel('stock price (USD)')
ax2.legend(loc=0)
ax2.grid(True)
ax3.semilogy(results['step_size'], color = 'b', linestyle = '-', linewidth = 2.0, label = 'step-size')
ax3.semilogy(results['variability'], color = 'r', linestyle = '-', linewidth = 2.0, label = 'variability')
ax3.legend(loc=0)
ax3.grid(True)
plt.show()
示例4: set_frame
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def set_frame(frame):
# convert 3x6 world_frame matrix into three line_data objects which is 3x2 (row:point index, column:x,y,z)
lines_data = [frame[:,[0,2]], frame[:,[1,3]], frame[:,[4,5]]]
ax = plt.gca()
lines = ax.get_lines()
for line, line_data in zip(lines[:3], lines_data):
x, y, z = line_data
line.set_data(x, y)
line.set_3d_properties(z)
global history, count
# plot history trajectory
history[count] = frame[:,4]
if count < np.size(history, 0) - 1:
count += 1
zline = history[:count,-1]
xline = history[:count,0]
yline = history[:count,1]
lines[-1].set_data(xline, yline)
lines[-1].set_3d_properties(zline)
# ax.plot3D(xline, yline, zline, 'blue')
示例5: flush
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def flush(self):
"""
Composes the vector.
Returns:
The composed vector.
"""
if self.__data__ is None:
self.__data__ = result = np.empty(self.__total_size__, dtype=self.__dtype__)
offset = 0
else:
offset = self.__data__.size
self.__data__ = result = np.empty(self.__total_size__ + self.__data__.size, dtype=self.__dtype__)
for i in self.__transactions__:
s = i.size
result[offset:offset + s] = i.reshape(-1)
offset += s
self.__transactions__ = []
return result
示例6: si_c
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def si_c(self, ww, use_numba_impl=False):
from numpy.linalg import solve
"""
This computes the correlation part of the screened interaction W_c
by solving <self.nprod> linear equations (1-K chi0) W = K chi0 K
or v_{ind}\sim W_{c} = (1-v\chi_{0})^{-1}v\chi_{0}v
scr_inter[w,p,q], where w in ww, p and q in 0..self.nprod
"""
if not hasattr(self, 'pab2v_den'):
self.pab2v_den = einsum('pab->apb', self.pb.get_ac_vertex_array())
si0 = np.zeros((ww.size, self.nprod, self.nprod), dtype=self.dtypeComplex)
if use_numba and use_numba_impl:
# numba implementation suffer from some continuous array issue
# for example in test test_0087_o2_gw.py
# use only for expeimental test
si_correlation_numba(si0, ww, self.x, self.kernel_sq, self.ksn2f, self.ksn2e,
self.pab2v_den, self.nprod, self.norbs, self.bsize,
self.nspin, self.nfermi, self.vstart)
else:
si_correlation(rf0_den(self, ww), si0, ww, self.kernel_sq, self.nprod)
return si0
示例7: __repr__
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def __repr__(self):
"""x.__repr__() <==> repr(x)."""
if not hasattr(self, "__repr"):
params = self.params or {}
parsed_params = []
for k, v in params.items():
sk = str(k)
if np.ndim(v) != 0 and np.size(v) > MAX_VALUES_TO_REPR:
tv = type(v)
sv = f"<{tv.__module__}.{tv.__name__}>"
else:
sv = str(v)
parsed_params.append(f"{sk}={sv}")
str_params = ", ".join(parsed_params)
self.__repr = f"{self.name}({str_params})"
return self.__repr
示例8: read_image_pair
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def read_image_pair(pair_path, resize_or_crop=None, image_size=(256,256)):
image_blur = cv2.imread(pair_path[0], cv2.IMREAD_COLOR)
image_blur = image_blur / 255.0 * 2.0 - 1.0
image_real = cv2.imread(pair_path[1], cv2.IMREAD_COLOR)
image_real = image_real / 255.0 * 2.0 - 1.0
if resize_or_crop != None:
assert image_size != None
if resize_or_crop == 'resize':
image_blur = cv2.resize(image_blur, image_size, interpolation=cv2.INTER_AREA)
image_real = cv2.resize(image_real, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image_blur = cv2.crop(image_blur, image_size)
image_real = cv2.crop(image_real, image_size)
else:
raise
if np.size(np.shape(image_blur)) == 3:
image_blur = np.expand_dims(image_blur, axis=0)
if np.size(np.shape(image_real)) == 3:
image_real = np.expand_dims(image_real, axis=0)
image_blur = np.array(image_blur, dtype=np.float32)
image_real = np.array(image_real, dtype=np.float32)
return image_blur, image_real
示例9: read_image
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def read_image(path, resize_or_crop=None, image_size=(256,256)):
image = cv2.imread(path, cv2.IMREAD_COLOR)
image = image/255.0 * 2.0 - 1.0
assert resize_or_crop != None
assert image_size != None
if resize_or_crop == 'resize':
image = cv2.resize(image, image_size, interpolation=cv2.INTER_AREA)
elif resize_or_crop == 'crop':
image = cv2.crop(image, image_size)
if np.size(np.shape(image)) == 3:
image = np.expand_dims(image, axis=0)
image = np.array(image, dtype=np.float32)
return image
示例10: test_count_nonzero_axis_consistent
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def test_count_nonzero_axis_consistent(self):
# Check that the axis behaviour for valid axes in
# non-special cases is consistent (and therefore
# correct) by checking it against an integer array
# that is then casted to the generic object dtype
from itertools import combinations, permutations
axis = (0, 1, 2, 3)
size = (5, 5, 5, 5)
msg = "Mismatch for axis: %s"
rng = np.random.RandomState(1234)
m = rng.randint(-100, 100, size=size)
n = m.astype(object)
for length in range(len(axis)):
for combo in combinations(axis, length):
for perm in permutations(combo):
assert_equal(
np.count_nonzero(m, axis=perm),
np.count_nonzero(n, axis=perm),
err_msg=msg % (perm,))
示例11: test_count_uses_size_on_exception
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def test_count_uses_size_on_exception():
class RaisingObjectException(Exception):
pass
class RaisingObject(object):
def __init__(self, msg='I will raise inside Cython'):
super(RaisingObject, self).__init__()
self.msg = msg
def __eq__(self, other):
# gets called in Cython to check that raising calls the method
raise RaisingObjectException(self.msg)
df = DataFrame({'a': [RaisingObject() for _ in range(4)],
'grp': list('ab' * 2)})
result = df.groupby('grp').count()
expected = DataFrame({'a': [2, 2]}, index=pd.Index(
list('ab'), name='grp'))
tm.assert_frame_equal(result, expected)
# size
# --------------------------------
示例12: test_responsive_units
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def test_responsive_units(self):
if self.test_data is None:
return
spike_times = self.test_data['spike_times']
spike_clusters = self.test_data['spike_clusters']
event_times = self.test_data['event_times']
alpha = 0.5
sig_units, stats, p_values, cluster_ids = bb.task.responsive_units(spike_times,
spike_clusters,
event_times,
pre_time=[0.5, 0],
post_time=[0, 0.5],
alpha=alpha)
num_clusters = np.size(np.unique(spike_clusters))
self.assertTrue(np.size(sig_units) == 125)
self.assertTrue(np.sum(p_values < alpha) == np.size(sig_units))
self.assertTrue(np.size(cluster_ids) == num_clusters)
示例13: test_roc_between_two_events
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def test_roc_between_two_events(self):
if self.test_data is None:
return
spike_times = self.test_data['spike_times']
spike_clusters = self.test_data['spike_clusters']
event_times = self.test_data['event_times']
event_groups = self.test_data['event_groups']
auc_roc, cluster_ids = bb.task.roc_between_two_events(spike_times,
spike_clusters,
event_times,
event_groups,
pre_time=0.5,
post_time=0.5)
num_clusters = np.size(np.unique(spike_clusters))
self.assertTrue(np.sum(auc_roc < 0.3) == 24)
self.assertTrue(np.sum(auc_roc > 0.7) == 10)
self.assertTrue(np.size(cluster_ids) == num_clusters)
示例14: policy_improvement
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def policy_improvement(self, actions, values, policy):
new_policy = np.copy(policy)
expected_action_returns = np.zeros((MAX_CARS + 1, MAX_CARS + 1, np.size(actions)))
cooks = dict()
with mp.Pool(processes=8) as p:
for action in actions:
k = np.arange(MAX_CARS + 1)
all_states = ((i, j) for i, j in itertools.product(k, k))
cooks[action] = partial(self.expected_return_pi, values, action)
results = p.map(cooks[action], all_states)
for v, i, j, a in results:
expected_action_returns[i, j, self.inverse_actions[a]] = v
for i in range(expected_action_returns.shape[0]):
for j in range(expected_action_returns.shape[1]):
new_policy[i, j] = actions[np.argmax(expected_action_returns[i, j])]
policy_change = (new_policy != policy).sum()
print(f'Policy changed in {policy_change} states')
return policy_change, new_policy
# O(n^4) computation for all possible requests and returns
開發者ID:ShangtongZhang,項目名稱:reinforcement-learning-an-introduction,代碼行數:24,代碼來源:car_rental_synchronous.py
示例15: _init_lenscale
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import size [as 別名]
def _init_lenscale(given_lenscale, learn_lenscale, input_dim):
"""Provide the lenscale variable and its initial value."""
given_lenscale = (np.sqrt(1.0 / input_dim) if given_lenscale is None
else np.array(given_lenscale).squeeze()).astype(
np.float32)
if learn_lenscale:
lenscale = pos_variable(given_lenscale, name="kernel_lenscale")
if np.size(given_lenscale) == 1:
summary_scalar(lenscale)
else:
summary_histogram(lenscale)
else:
lenscale = given_lenscale
lenscale_vec = tf.ones(input_dim, dtype=tf.float32) * lenscale
init_lenscale = given_lenscale * np.ones(input_dim, dtype=np.float32)
return lenscale_vec, init_lenscale