當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.sinh方法代碼示例

本文整理匯總了Python中numpy.sinh方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.sinh方法的具體用法?Python numpy.sinh怎麽用?Python numpy.sinh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.sinh方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: psi2c2c3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def psi2c2c3(self, psi0):

        c2 = np.zeros(len(psi0))
        c3 = np.zeros(len(psi0))

        psi12 = np.sqrt(np.abs(psi0))
        pos = psi0 >= 0
        neg = psi0 < 0
        if np.any(pos):
            c2[pos] = (1 - np.cos(psi12[pos]))/psi0[pos]
            c3[pos] = (psi12[pos] - np.sin(psi12[pos]))/psi12[pos]**3.
        if any(neg):
            c2[neg] = (1 - np.cosh(psi12[neg]))/psi0[neg]
            c3[neg] = (np.sinh(psi12[neg]) - psi12[neg])/psi12[neg]**3.

        tmp = c2+c3 == 0
        if any(tmp):
            c2[tmp] = 1./2.
            c3[tmp] = 1./6.

        return c2,c3 
開發者ID:dsavransky,項目名稱:EXOSIMS,代碼行數:23,代碼來源:keplerSTM.py

示例2: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def __init__(self, img, percentiles=[1, 99]):
        """Create norm that is linear between lower and upper percentile of img
        Parameters
        ----------
        img: array_like
            Image to normalize
        percentile: array_like, default=[1,99]
            Lower and upper percentile to consider. Pixel values below will be
            set to zero, above to saturated.
        """
        assert len(percentiles) == 2
        vmin, vmax = np.percentile(img, percentiles)
        # solution for beta assumes flat spectrum at vmax
        stretch = vmax - vmin
        beta = stretch / np.sinh(1)
        super().__init__(minimum=vmin, stretch=stretch, Q=beta) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:18,代碼來源:display.py

示例3: c2c3

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def c2c3(psi):  # Stumpff functions definitions

    c2, c3 = 0, 0

    if np.any(psi > 1e-6):
        c2 = (1 - np.cos(np.sqrt(psi))) / psi
        c3 = (np.sqrt(psi) - np.sin(np.sqrt(psi))) / np.sqrt(psi ** 3)

    if np.any(psi < -1e-6):
        c2 = (1 - np.cosh(np.sqrt(-psi))) / psi
        c3 = (np.sinh(np.sqrt(-psi)) - np.sqrt(-psi)) / np.sqrt(-psi ** 3)

    if np.any(abs(psi) <= 1e-6):
        c2 = 0.5
        c3 = 1. / 6.

    return c2, c3 
開發者ID:lukekulik,項目名稱:solar-system,代碼行數:19,代碼來源:uvf.py

示例4: tauStep

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def tauStep(dtau, v0, x0, t0, g):
        ## linear step in proper time of clock.
        ## If an object has proper acceleration g and starts at position x0 with speed v0 at time t0
        ## as seen from an inertial frame, then return the new v, x, t after proper time dtau has elapsed.
        

        ## Compute how much t will change given a proper-time step of dtau
        gamma = (1. - v0**2)**-0.5
        if g == 0:
            dt = dtau * gamma
        else:
            v0g = v0 * gamma
            dt = (np.sinh(dtau * g + np.arcsinh(v0g)) - v0g) / g
        
        #return v0 + dtau * g, x0 + v0*dt, t0 + dt
        v1, x1, t1 = Simulation.hypTStep(dt, v0, x0, t0, g)
        return v1, x1, t0+dt 
開發者ID:SrikanthVelpuri,項目名稱:tf-pose,代碼行數:19,代碼來源:relativity.py

示例5: _eq_10_42

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def _eq_10_42(lam_1, lam_2, t_12):
    """
    Equation (10.42) of Functions of Matrices: Theory and Computation.

    Notes
    -----
    This is a helper function for _fragment_2_1 of expm_2009.
    Equation (10.42) is on page 251 in the section on Schur algorithms.
    In particular, section 10.4.3 explains the Schur-Parlett algorithm.
    expm([[lam_1, t_12], [0, lam_1])
    =
    [[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)],
    [0, exp(lam_2)]
    """

    # The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1)
    # apparently suffers from cancellation, according to Higham's textbook.
    # A nice implementation of sinch, defined as sinh(x)/x,
    # will apparently work around the cancellation.
    a = 0.5 * (lam_1 + lam_2)
    b = 0.5 * (lam_1 - lam_2)
    return t_12 * np.exp(a) * _sinch(b) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:matfuncs.py

示例6: fields

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def fields(x,y,z, kx, ky, kz, B0):
    k1 =  -B0*kx/ky
    k2 = -B0*kz/ky
    kx_x = kx*x
    ky_y = ky*y
    kz_z = kz*z
    cosx = np.cos(kx_x)
    sinhy = np.sinh(ky_y)
    cosz = np.cos(kz_z)
    Bx = k1*np.sin(kx_x)*sinhy*cosz #// here kx is only real
    By = B0*cosx*np.cosh(ky_y)*cosz
    Bz = k2*cosx*sinhy*np.sin(kz_z)
    #Bx = ne.evaluate("k1*sin(kx*x)*sinhy*cosz")
    #By = ne.evaluate("B0*cosx*cosh(ky*y)*cosz")
    #Bz = ne.evaluate("k2*cosx*sinhy*sin(kz*z)")
    return Bx, By, Bz 
開發者ID:ocelot-collab,項目名稱:ocelot,代碼行數:18,代碼來源:rk_py.py

示例7: TMS

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def TMS(r, phi):
    """Two-mode squeezing.

    Args:
        r (float): squeezing magnitude
        phi (float): rotation parameter

    Returns:
        array: symplectic transformation matrix
    """
    cp = np.cos(phi)
    sp = np.sin(phi)
    ch = np.cosh(r)
    sh = np.sinh(r)

    S = np.array(
        [
            [ch, cp * sh, 0, sp * sh],
            [cp * sh, ch, sp * sh, 0],
            [0, sp * sh, ch, -cp * sh],
            [sp * sh, 0, -cp * sh, ch],
        ]
    )

    return S 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:27,代碼來源:test_circuitspecs_X8.py

示例8: test_squeezed_state_gaussian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_squeezed_state_gaussian(self, r, phi, hbar, tol):
        """test squeezed state returns correct means and covariance"""
        means, cov = utils.squeezed_state(r, phi, basis="gaussian", hbar=hbar)

        cov_expected = (hbar / 2) * np.array(
            [
                [
                    np.cosh(2 * r) - np.cos(phi) * np.sinh(2 * r),
                    -2 * np.cosh(r) * np.sin(phi) * np.sinh(r),
                ],
                [
                    -2 * np.cosh(r) * np.sin(phi) * np.sinh(r),
                    np.cosh(2 * r) + np.cos(phi) * np.sinh(2 * r),
                ],
            ]
        )

        assert np.all(means == np.zeros([2]))
        assert np.allclose(cov, cov_expected, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:21,代碼來源:test_utils.py

示例9: test_displaced_squeezed_state_gaussian

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_displaced_squeezed_state_gaussian(self, r_d, phi_d, r_s, phi_s, hbar, tol):
        """test displaced squeezed state returns correct means and covariance"""
        means, cov = utils.displaced_squeezed_state(r_d, phi_d, r_s, phi_s, basis="gaussian", hbar=hbar)

        a = r_d * np.exp(1j * phi_d)
        means_expected = np.array([[a.real, a.imag]]) * np.sqrt(2 * hbar)
        cov_expected = (hbar / 2) * np.array(
            [
                [
                    np.cosh(2 * r_s) - np.cos(phi_s) * np.sinh(2 * r_s),
                    -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s),
                ],
                [
                    -2 * np.cosh(r_s) * np.sin(phi_s) * np.sinh(r_s),
                    np.cosh(2 * r_s) + np.cos(phi_s) * np.sinh(2 * r_s),
                ],
            ]
        )

        assert np.allclose(means, means_expected, atol=tol, rtol=0)
        assert np.allclose(cov, cov_expected, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:23,代碼來源:test_utils.py

示例10: test_displaced_squeezed_state_fock

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_displaced_squeezed_state_fock(self, r_d, phi_d, r_s, phi_s, hbar, cutoff, tol):
        """test displaced squeezed state returns correct Fock basis state vector"""
        state = utils.displaced_squeezed_state(r_d, phi_d, r_s, phi_s, basis="fock", fock_dim=cutoff, hbar=hbar)
        a = r_d * np.exp(1j * phi_d)

        if r_s == 0:
            pytest.skip("test only non-zero squeezing")

        n = np.arange(cutoff)
        gamma = a * np.cosh(r_s) + np.conj(a) * np.exp(1j * phi_s) * np.sinh(r_s)
        coeff = np.diag(
            (0.5 * np.exp(1j * phi_s) * np.tanh(r_s)) ** (n / 2) / np.sqrt(fac(n) * np.cosh(r_s))
        )

        expected = H(gamma / np.sqrt(np.exp(1j * phi_s) * np.sinh(2 * r_s)), coeff)
        expected *= np.exp(
            -0.5 * np.abs(a) ** 2 - 0.5 * np.conj(a) ** 2 * np.exp(1j * phi_s) * np.tanh(r_s)
        )

        assert np.allclose(state, expected, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:22,代碼來源:test_utils.py

示例11: matrix_elem

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def matrix_elem(n, r, m):
    """Matrix element corresponding to squeezed density matrix[n, m]"""
    eps = 1e-10

    if n % 2 != m % 2:
        return 0.0

    if r == 0.0:
        return np.complex(n == m)  # delta function

    k = np.arange(m % 2, min([m, n]) + 1, 2)
    res = np.sum(
        (-1) ** ((n - k) / 2)
        * np.exp(
            (lg(m + 1) + lg(n + 1)) / 2
            - lg(k + 1)
            - lg((m - k) / 2 + 1)
            - lg((n - k) / 2 + 1)
        )
        * (np.sinh(r) / 2 + eps) ** ((n + m - 2 * k) / 2)
        / (np.cosh(r) ** ((n + m + 1) / 2))
    )
    return res 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:25,代碼來源:test_squeeze_operation.py

示例12: test_squeezed_coherent

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_squeezed_coherent(setup_backend, hbar, tol):
    """Test Wigner function for a squeezed coherent state
    matches the analytic result"""
    backend = setup_backend(1)
    backend.prepare_coherent_state(np.abs(A), np.angle(A), 0)
    backend.squeeze(R, PHI, 0)

    state = backend.state()
    W = state.wigner(0, XVEC, XVEC)
    rot = rotm(PHI / 2)

    # exact wigner function
    alpha = A * np.cosh(R) - np.conjugate(A) * np.exp(1j * PHI) * np.sinh(R)
    mu = np.array([alpha.real, alpha.imag]) * np.sqrt(2 * hbar)
    cov = np.diag([np.exp(-2 * R), np.exp(2 * R)])
    cov = np.dot(rot, np.dot(cov, rot.T)) * hbar / 2.0
    Wexact = wigner(GRID, mu, cov)

    assert np.allclose(W, Wexact, atol=0.01, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:21,代碼來源:test_states_wigner.py

示例13: test_squeezed_coherent

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_squeezed_coherent(self, setup_backend, hbar, batch_size, tol):
        """Test squeezed coherent state has correct mean and variance"""
        # quadrature rotation angle
        backend = setup_backend(1)
        qphi = 0.78

        backend.prepare_displaced_squeezed_state(np.abs(a), np.angle(a), r, phi, 0)

        state = backend.state()
        res = np.array(state.quad_expectation(0, phi=qphi)).T

        xphi_mean = (a.real * np.cos(qphi) + a.imag * np.sin(qphi)) * np.sqrt(2 * hbar)
        xphi_var = (np.cosh(2 * r) - np.cos(phi - 2 * qphi) * np.sinh(2 * r)) * hbar / 2
        res_exact = np.array([xphi_mean, xphi_var])

        if batch_size is not None:
            res_exact = np.tile(res_exact, batch_size)

        assert np.allclose(res.flatten(), res_exact.flatten(), atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:21,代碼來源:test_states.py

示例14: test_number_expectation_two_mode_squeezed

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def test_number_expectation_two_mode_squeezed(self, setup_backend, tol, batch_size):
        """Tests the expectation value of photon numbers when there is correlation"""
        if batch_size is not None:
            pytest.skip("Does not support batch mode")
        backend = setup_backend(3)
        state = backend.state()
        r = 0.2
        phi = 0.0
        backend.prepare_squeezed_state(r, phi, 0)
        backend.prepare_squeezed_state(-r, phi, 2)
        backend.beamsplitter(np.pi/4, np.pi, 0, 2)
        state = backend.state()
        nbar = np.sinh(r) ** 2

        res = state.number_expectation([2, 0])
        assert np.allclose(res[0], 2 * nbar ** 2 + nbar, atol=tol, rtol=0)

        res = state.number_expectation([0])
        assert np.allclose(res[0], nbar, atol=tol, rtol=0)

        res = state.number_expectation([2])
        assert np.allclose(res[0], nbar, atol=tol, rtol=0) 
開發者ID:XanaduAI,項目名稱:strawberryfields,代碼行數:24,代碼來源:test_states.py

示例15: cheb2ap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinh [as 別名]
def cheb2ap(N, rs):
    """Return (z,p,k) zero, pole, gain for Nth order Chebyshev type II lowpass
    analog filter prototype with `rs` decibels of ripple in the stopband.

    The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1,
    defined as the point at which the gain first reaches -`rs`.

    """
    de = 1.0 / sqrt(10 ** (0.1 * rs) - 1)
    mu = arcsinh(1.0 / de) / N

    if N % 2:
        n = numpy.concatenate((numpy.arange(1, N - 1, 2),
                               numpy.arange(N + 2, 2 * N, 2)))
    else:
        n = numpy.arange(1, 2 * N, 2)

    z = conjugate(1j / cos(n * pi / (2.0 * N)))
    p = exp(1j * (pi * numpy.arange(1, 2 * N, 2) / (2.0 * N) + pi / 2.0))
    p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag
    p = 1.0 / p
    k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real
    return z, p, k 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:25,代碼來源:filter_design.py


注:本文中的numpy.sinh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。