當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.sinc方法代碼示例

本文整理匯總了Python中numpy.sinc方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.sinc方法的具體用法?Python numpy.sinc怎麽用?Python numpy.sinc使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.sinc方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: lanczos

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def lanczos(dx, a=3):
    """Lanczos kernel

    Parameters
    ----------
    dx: float
        amount to shift image
    a: int
        Lanczos window size parameter

    Returns
    -------
    result: array-like
        1D Lanczos kernel
    """
    if np.abs(dx) > 1:
        raise ValueError("The fractional shift dx must be between -1 and 1")
    window = np.arange(-a + 1, a + 1) + np.floor(dx)
    y = np.sinc(dx - window) * np.sinc((dx - window) / a)
    return y, window.astype(int) 
開發者ID:pmelchior,項目名稱:scarlet,代碼行數:22,代碼來源:interpolation.py

示例2: test_projected_incumbent_estimation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def test_projected_incumbent_estimation(self):
        X = np.random.randn(20, 10)
        y = np.sinc(X).sum(axis=1)

        class DemoModel(object):
            def train(self, X, y):
                self.X = X
                self.y = y

            def predict(self, X):
                return self.y, np.ones(self.y.shape[0])

        model = DemoModel()
        model.train(X, y)
        inc, inc_val = incumbent_estimation.projected_incumbent_estimation(model, X, proj_value=1)
        b = np.argmin(y)

        assert inc[-1] == 1
        assert np.all(inc[:-1] == X[b])
        assert inc_val == y[b] 
開發者ID:automl,項目名稱:RoBO,代碼行數:22,代碼來源:test_incumbent_estimation.py

示例3: setUp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def setUp(self):
        X_task_1 = np.random.rand(10, 2)
        y_task_1 = np.sinc(X_task_1 * 10 - 5).sum(axis=1)
        X_task_1 = np.concatenate((X_task_1, np.zeros([10, 1])), axis=1)

        X_task_2 = np.random.rand(10, 2)
        y_task_2 = np.sinc(X_task_2 * 2 - 4).sum(axis=1)
        X_task_2 = np.concatenate((X_task_2, np.ones([10, 1])), axis=1)

        X_task_3 = np.random.rand(10, 2)
        y_task_3 = np.sinc(X_task_3 * 8 - 6).sum(axis=1)
        X_task_3 = np.concatenate((X_task_3, 2 * np.ones([10, 1])), axis=1)

        self.X = np.concatenate((X_task_1, X_task_2, X_task_3), axis=0)
        self.y = np.concatenate((y_task_1, y_task_2, y_task_3), axis=0)
        self.model = WrapperBohamiann()
        self.model.train(self.X, self.y) 
開發者ID:automl,項目名稱:RoBO,代碼行數:19,代碼來源:test_wrapper_bohamiann.py

示例4: expmap_to_quaternion

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def expmap_to_quaternion(e):
    """
    Convert axis-angle rotations (aka exponential maps) to quaternions.
    Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
    Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
    Returns a tensor of shape (*, 4).
    """
    assert e.shape[-1] == 3
    
    original_shape = list(e.shape)
    original_shape[-1] = 4
    e = e.reshape(-1, 3)

    theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
    w = np.cos(0.5*theta).reshape(-1, 1)
    xyz = 0.5*np.sinc(0.5*theta/np.pi)*e
    return np.concatenate((w, xyz), axis=1).reshape(original_shape) 
開發者ID:zhenpeiyang,項目名稱:RelativePose,代碼行數:19,代碼來源:quaternion.py

示例5: main

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def main():
    """Test driver"""
    # From pp. 149-150
    x = np.ones(21)
    p = q = 1
    print('x: {}\np: {}\nq: {}'.format(x,p,q))
    b,a,err = prony(x, p, q)
    print('a: {}\nb: {}\nerr: {}'.format(a,b,err))
 
    # From pp. 152-153
    # Note that these results don't match the book, but they do match the
    # MATLAB version. So I'm either setting things up wrong or this is an
    # errata in the book.
    p = q = 5
    nd = 5
    n = np.arange(11)
    i = np.sinc((n-nd)/2)/2
    b,a,err = prony(i, p, q)
    print('a: {}\nb: {}\nerr: {}'.format(a,b,err)) 
開發者ID:awesomebytes,項目名稱:parametric_modeling,代碼行數:21,代碼來源:prony.py

示例6: test_fraunhofer_propagation_rectangular

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def test_fraunhofer_propagation_rectangular():
	for num_pix in [512, 1024]:
		pupil_grid = make_pupil_grid(num_pix)
		focal_grid = make_focal_grid(16, 8)

		for size in [[1,1], [0.75,1], [0.75,0.75]]:
			aperture = evaluate_supersampled(rectangular_aperture(size), pupil_grid, 8)

			for focal_length in [1, 1.3]:
				prop = FraunhoferPropagator(pupil_grid, focal_grid, focal_length=focal_length)

				for wavelength in [1, 0.8]:
					wf = Wavefront(aperture, wavelength)
					img = prop(wf).electric_field
					img /= img[np.argmax(np.abs(img))]

					k_x, k_y = np.array(size) / wavelength / focal_length
					reference = (np.sinc(k_x * focal_grid.x) * np.sinc(k_y * focal_grid.y))

					if num_pix == 512:
						assert np.abs(img - reference).max() < 5e-5
					elif num_pix == 1024:
						assert np.abs(img - reference).max() < 2e-5
					else:
						assert False # This should never happen. 
開發者ID:ehpor,項目名稱:hcipy,代碼行數:27,代碼來源:test_propagation.py

示例7: CompensateTSC

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def CompensateTSC(w, v):
    """
    Return the Fourier-space kernel that accounts for the convolution of
    the gridded field with the TSC window function in configuration space.

    .. note::
        see equation 18 (with p=3) of
        `Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_

    Parameters
    ----------
    w : list of arrays
        the list of "circular" coordinate arrays, ranging from
        :math:`[-\pi, \pi)`.
    v : array_like
        the field array
    """
    for i in range(3):
        wi = w[i]
        tmp = (numpy.sinc(0.5 * wi / numpy.pi) ) ** 3
        v = v / tmp
    return v 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:24,代碼來源:catalog.py

示例8: CompensatePCS

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def CompensatePCS(w, v):
    """
    Return the Fourier-space kernel that accounts for the convolution of
    the gridded field with the PCS window function in configuration space.

    .. note::
        see equation 18 (with p=4) of
        `Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_

    Parameters
    ----------
    w : list of arrays
        the list of "circular" coordinate arrays, ranging from
        :math:`[-\pi, \pi)`.
    v : array_like
        the field array
    """
    for i in range(3):
        wi = w[i]
        tmp = (numpy.sinc(0.5 * wi / numpy.pi) ) ** 4
        v = v / tmp
    return v 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:24,代碼來源:catalog.py

示例9: CompensateCIC

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def CompensateCIC(w, v):
    """
    Return the Fourier-space kernel that accounts for the convolution of
    the gridded field with the CIC window function in configuration space

    .. note::
        see equation 18 (with p=2) of
        `Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_

    Parameters
    ----------
    w : list of arrays
        the list of "circular" coordinate arrays, ranging from
        :math:`[-\pi, \pi)`.
    v : array_like
        the field array
    """
    for i in range(3):
        wi = w[i]
        tmp = (numpy.sinc(0.5 * wi / numpy.pi) ) ** 2
        tmp[wi == 0.] = 1.
        v = v / tmp
    return v 
開發者ID:bccp,項目名稱:nbodykit,代碼行數:25,代碼來源:catalog.py

示例10: sincinterp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def sincinterp(x):
        """
        Sinc interpolation for computation of fractional transformations.
        As appears in :
        -https://github.com/audiolabs/frft/
        ----------
        Args:
            f       : (array) Complex valued input array
            a       : (float) Alpha factor
        Returns:
            ret     : (array) Real valued synthesised data
        """
        N = len(x)
        y = np.zeros(2 * N - 1, dtype=x.dtype)
        y[:2 * N:2] = x
        xint = fftconvolve( y[:2 * N], np.sinc(np.arange(-(2 * N - 3), (2 * N - 2)).T / 2),)
        return xint[2 * N - 3: -2 * N + 3] 
開發者ID:TUIlmenauAMS,項目名稱:ASP,代碼行數:19,代碼來源:TFMethods.py

示例11: fractional_delay

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def fractional_delay(t0):
    """
    Creates a fractional delay filter using a windowed sinc function.
    The length of the filter is fixed by the module wide constant
    `frac_delay_length` (default 81).

    Parameters
    ----------
    t0: float
        The delay in fraction of sample. Typically between -1 and 1.

    Returns
    -------
    numpy array
        A fractional delay filter with specified delay.
    """

    N = constants.get("frac_delay_length")

    return np.hanning(N) * np.sinc(np.arange(N) - (N - 1) / 2 - t0) 
開發者ID:LCAV,項目名稱:pyroomacoustics,代碼行數:22,代碼來源:utilities.py

示例12: _get_taper_eigenvalues

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def _get_taper_eigenvalues(tapers, half_bandwidth, time_index):
    '''Finds the eigenvalues of the original spectral concentration
    problem using the autocorr sequence technique from Percival and Walden,
    1993 pg 390

    Parameters
    ----------
    tapers : array, shape (n_tapers, n_time_samples_per_window)
    half_bandwidth : float
    time_index : array, (n_time_samples_per_window,)

    Returns
    -------
    eigenvalues : array, shape (n_tapers,)

    '''

    ideal_filter = 4 * half_bandwidth * np.sinc(
        2 * half_bandwidth * time_index)
    ideal_filter[0] = 2 * half_bandwidth
    n_time_samples_per_window = len(time_index)
    return np.dot(
        _auto_correlation(tapers)[:, :n_time_samples_per_window],
        ideal_filter) 
開發者ID:Eden-Kramer-Lab,項目名稱:spectral_connectivity,代碼行數:26,代碼來源:transforms.py

示例13: val_exp

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def val_exp(B_val):
    """
    Fast implementation of the translation and rotation specific exp function
    """
    t_val = imt_func(B_val, no.value)

    phiP_val = B_val - mult_with_ninf(t_val)
    phi = np.sqrt(-float(gmt_func(phiP_val, phiP_val)[0]))
    P_val = phiP_val / phi

    P_n_val = gmt_func(P_val, I3.value)
    t_nor_val = gmt_func(imt_func(t_val, P_n_val), P_n_val)
    t_par_val = t_val - t_nor_val

    coef_val = np.sin(phi) * P_val
    coef_val[0] += np.cos(phi)

    R_val = coef_val + gmt_func(coef_val, mult_with_ninf(t_nor_val)) + \
        np.sinc(phi/np.pi) * mult_with_ninf(t_par_val)
    return R_val 
開發者ID:pygae,項目名稱:clifford,代碼行數:22,代碼來源:rotor_parameterisation.py

示例14: conv_receiver_slit

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def conv_receiver_slit(self):
        """
        compute the rectangular convolution for the receiver slit or SiPSD
        pixel size

        Returns
        -------
        array-like
            the convolver
        """
        me = self.get_function_name()  # the name of the convolver, as a string
        # The receiver slit convolution is a top-hat of angular half-width
        # a=(slit_width/2)/diffractometer_radius
        # which has Fourier transform of sin(a omega)/(a omega)
        # NOTE! numpy's sinc(x) is sin(pi x)/(pi x), not sin(x)/x
        if self.param_dicts[me].get("slit_width", None) is None:
            return None

        epsr = (self.param_dicts["conv_receiver_slit"]["slit_width"] /
                self.param_dicts["conv_global"]["diffractometer_radius"])
        return self.general_tophat(me, epsr) 
開發者ID:dkriegner,項目名稱:xrayutilities,代碼行數:23,代碼來源:powder.py

示例15: design_windowed_sinc_lpf

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import sinc [as 別名]
def design_windowed_sinc_lpf(fc, bw):
        N = Filter.get_filter_length_from_bandwidth(bw)

        # Compute sinc filter impulse response
        h = np.sinc(2 * fc * (np.arange(N) - (N - 1) / 2.))

        # We use blackman window function
        w = np.blackman(N)

        # Multiply sinc filter with window function
        h = h * w

        # Normalize to get unity gain
        h_unity = h / np.sum(h)

        return h_unity 
開發者ID:jopohl,項目名稱:urh,代碼行數:18,代碼來源:Filter.py


注:本文中的numpy.sinc方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。