本文整理匯總了Python中numpy.setdiff1d方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.setdiff1d方法的具體用法?Python numpy.setdiff1d怎麽用?Python numpy.setdiff1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.setdiff1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_intercept
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def add_intercept(self, X):
"""Add 1's to data as last features."""
# Data shape
N, D = X.shape
# Check if there's not already an intercept column
if np.any(np.sum(X, axis=0) == N):
# Report
print('Intercept is not the last feature. Swapping..')
# Find which column contains the intercept
intercept_index = np.argwhere(np.sum(X, axis=0) == N)
# Swap intercept to last
X = X[:, np.setdiff1d(np.arange(D), intercept_index)]
# Add intercept as last column
X = np.hstack((X, np.ones((N, 1))))
# Append column of 1's to data, and increment dimensionality
return X, D+1
示例2: test_one_hot
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_one_hot():
"""Check if one_hot returns correct label matrices."""
# Generate label vector
y = np.hstack((np.ones((10,))*0,
np.ones((10,))*1,
np.ones((10,))*2))
# Map to matrix
Y, labels = one_hot(y)
# Check for only 0's and 1's
assert len(np.setdiff1d(np.unique(Y), [0, 1])) == 0
# Check for correct labels
assert np.all(labels == np.unique(y))
# Check correct shape of matrix
assert Y.shape[0] == y.shape[0]
assert Y.shape[1] == len(labels)
示例3: dfs_trunk
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def dfs_trunk(sim, A,alpha = 0.99, QUERYKNN = 10, maxiter = 8, K = 100, tol = 1e-3):
qsim = sim_kernel(sim).T
sortidxs = np.argsort(-qsim, axis = 1)
for i in range(len(qsim)):
qsim[i,sortidxs[i,QUERYKNN:]] = 0
qsims = sim_kernel(qsim)
W = sim_kernel(A)
W = csr_matrix(topK_W(W, K))
out_ranks = []
t =time()
for i in range(qsims.shape[0]):
qs = qsims[i,:]
tt = time()
w_idxs, W_trunk = find_trunc_graph(qs, W, 2);
Wn = normalize_connection_graph(W_trunk)
Wnn = eye(Wn.shape[0]) - alpha * Wn
f,inf = s_linalg.minres(Wnn, qs[w_idxs], tol=tol, maxiter=maxiter)
ranks = w_idxs[np.argsort(-f.reshape(-1))]
missing = np.setdiff1d(np.arange(A.shape[1]), ranks)
out_ranks.append(np.concatenate([ranks.reshape(-1,1), missing.reshape(-1,1)], axis = 0))
#print time() -t, 'qtime'
out_ranks = np.concatenate(out_ranks, axis = 1)
return out_ranks
示例4: set_diff
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def set_diff(ar1, ar2):
"""Find the set difference of two index arrays.
Return the unique values in ar1 that are not in ar2.
Parameters
----------
ar1: utils.Index
Input index array.
ar2: utils.Index
Input comparison index array.
Returns
-------
setdiff:
Array of values in ar1 that are not in ar2.
"""
ar1_np = ar1.tonumpy()
ar2_np = ar2.tonumpy()
setdiff = np.setdiff1d(ar1_np, ar2_np)
setdiff = toindex(setdiff)
return setdiff
示例5: cross_validation_folds
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def cross_validation_folds(n, k=5):
if n % k != 0:
skip = int(np.floor(float(n)/float(k)))
else:
skip = n/k
ind = np.arange(n)
np.random.shuffle(ind)
train_ind = dict()
val_ind = dict()
for i in range(k):
if i == k-1: # Use the rest of the examples
val = ind[skip*i:]
else:
val = ind[skip*i:skip*(i+1)]
train = np.setdiff1d(ind, val_ind)
val_ind[i] = val
train_ind[i] = train
return train_ind, val_ind
示例6: focus
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def focus(self, lines):
'''
focus to target lines
Args:
lines (list): the target lines to put up.
'''
alllines = range(self.num_bit)
pin = NodeBrush('pin')
old_positions = []
for i in range(self.num_bit):
old_positions.append(self.gate(pin, i))
lmap = np.append(lines, np.setdiff1d(alllines, lines))
self.x += 0.8
pins = []
for opos, j in zip(old_positions, lmap):
pi = Pin(self.get_position(j))
self.node_dict[j].append(pi)
self.edge >> (opos, pi)
pins.append(pi)
return pins
示例7: _parallel_predict_log_proba
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def _parallel_predict_log_proba(estimators, estimators_features, X, n_classes):
"""Private function used to compute log probabilities within a job."""
n_samples = X.shape[0]
log_proba = np.empty((n_samples, n_classes))
log_proba.fill(-np.inf)
all_classes = np.arange(n_classes, dtype=np.int)
for estimator, features in zip(estimators, estimators_features):
log_proba_estimator = estimator.predict_log_proba(X[:, features])
if n_classes == len(estimator.classes_):
log_proba = np.logaddexp(log_proba, log_proba_estimator)
else:
log_proba[:, estimator.classes_] = np.logaddexp(
log_proba[:, estimator.classes_],
log_proba_estimator[:, range(len(estimator.classes_))])
missing = np.setdiff1d(all_classes, estimator.classes_)
log_proba[:, missing] = np.logaddexp(log_proba[:, missing],
-np.inf)
return log_proba
示例8: inverse_transform
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def inverse_transform(self, y):
"""Transform labels back to original encoding.
Parameters
----------
y : numpy array of shape [n_samples]
Target values.
Returns
-------
y : numpy array of shape [n_samples]
"""
check_is_fitted(self, 'classes_')
y = column_or_1d(y, warn=True)
# inverse transform of empty array is empty array
if _num_samples(y) == 0:
return np.array([])
diff = np.setdiff1d(y, np.arange(len(self.classes_)))
if len(diff):
raise ValueError(
"y contains previously unseen labels: %s" % str(diff))
y = np.asarray(y)
return self.classes_[y]
示例9: remove_intercept
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def remove_intercept(self, X):
"""Remove 1's from data as last features."""
# Data shape
N, D = X.shape
# Find which column contains the intercept
intercept_index = []
for d in range(D):
if np.all(X[:, d] == 0):
intercept_index.append(d)
# Remove intercept columns
X = X[:, np.setdiff1d(np.arange(D), intercept_index)]
return X, D-len(intercept_index)
示例10: test_predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_predict():
"""Test for making predictions."""
X = rnd.randn(10, 2)
y = np.hstack((-np.ones((5,)), np.ones((5,))))
Z = rnd.randn(10, 2) + 1
clf = ImportanceWeightedClassifier()
clf.fit(X, y, Z)
u_pred = clf.predict(Z)
labels = np.unique(y)
assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
示例11: test_predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_predict():
"""Test for making predictions."""
X = rnd.randn(10, 2)
y = np.hstack((-np.ones((5,)), np.ones((5,))))
Z = rnd.randn(10, 2) + 1
clf = TransferComponentClassifier()
clf.fit(X, y, Z)
u_pred = clf.predict(Z)
labels = np.unique(y)
assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
示例12: test_predict_semi
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_predict_semi():
"""Test for making predictions."""
X = rnd.randn(10, 2)
y = np.hstack((np.zeros((5,)), np.ones((5,))))
Z = rnd.randn(10, 2) + 1
u = np.array([[0, 0], [9, 1]])
clf = SemiSubspaceAlignedClassifier()
clf.fit(X, y, Z, u)
u_pred = clf.predict(Z)
labels = np.unique(y)
assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
示例13: test_predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_predict():
"""Test for making predictions."""
X = rnd.randn(10, 2)
y = np.hstack((np.zeros((5,)), np.ones((5,))))
Z = rnd.randn(10, 2) + 1
clf = RobustBiasAwareClassifier()
clf.fit(X, y, Z)
u_pred = clf.predict(Z)
labels = np.unique(y)
assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
示例14: test_predict
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_predict():
"""Test for making predictions."""
X = np.vstack((rnd.randn(5, 2), rnd.randn(5, 2)+1))
y = np.hstack((np.zeros((5,)), np.ones((5,))))
Z = np.vstack((rnd.randn(5, 2)-1, rnd.randn(5, 2)+2))
clf = TargetContrastivePessimisticClassifier(l2=0.1)
clf.fit(X, y, Z)
u_pred = clf.predict(Z)
labels = np.unique(y)
assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0
示例15: test_init
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import setdiff1d [as 別名]
def test_init():
"""Test for object type."""
clf = StructuralCorrespondenceClassifier()
assert type(clf) == StructuralCorrespondenceClassifier
assert not clf.is_trained
# def test_fit():
# """Test for fitting the model."""
# X = np.vstack((rnd.randn(5, 2), rnd.randn(5, 2)+1))
# y = np.hstack((np.zeros((5,)), np.ones((5,))))
# Z = np.vstack((rnd.randn(5, 2)-1, rnd.randn(5, 2)+2))
# clf = StructuralCorrespondenceClassifier(l2=1.0)
# clf.fit(X, y, Z)
# assert clf.is_trained
# def test_predict():
# """Test for making predictions."""
# X = np.vstack((rnd.randn(5, 2), rnd.randn(5, 2)+1))
# y = np.hstack((np.zeros((5,)), np.ones((5,))))
# Z = np.vstack((rnd.randn(5, 2)-1, rnd.randn(5, 2)+2))
# clf = StructuralCorrespondenceClassifier(l2=1.0)
# clf.fit(X, y, Z)
# u_pred = clf.predict(Z)
# labels = np.unique(y)
# assert len(np.setdiff1d(np.unique(u_pred), labels)) == 0