本文整理匯總了Python中numpy.savez_compressed方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.savez_compressed方法的具體用法?Python numpy.savez_compressed怎麽用?Python numpy.savez_compressed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類numpy
的用法示例。
在下文中一共展示了numpy.savez_compressed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: process_training_data
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def process_training_data(num_clips):
"""
Processes random training clips from the full training data. Saves to TRAIN_DIR_CLIPS by
default.
@param num_clips: The number of clips to process. Default = 5000000 (set in __main__).
@warning: This can take a couple of hours to complete with large numbers of clips.
"""
num_prev_clips = len(glob(c.TRAIN_DIR_CLIPS + '*'))
for clip_num in xrange(num_prev_clips, num_clips + num_prev_clips):
clip = process_clip()
np.savez_compressed(c.TRAIN_DIR_CLIPS + str(clip_num), clip)
if (clip_num + 1) % 100 == 0: print 'Processed %d clips' % (clip_num + 1)
示例2: write_cache_file
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def write_cache_file(cache_filename, Y, image_IDs):
""" Writes data to a cache file using np.savez_compressed
Args:
cache_filename (str): cache filename
Y (np.ndarray): data to write to cache file
image_IDs (iterable): list of image IDs corresponding to data in cache
file. If not specified, function will not check for correspondence
"""
np.savez_compressed(cache_filename, **{
'Y': Y, _image_ID_str: image_IDs
})
# Cache file updating
示例3: save_subvolume
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def save_subvolume(labels, origins, output_path, **misc_items):
"""Saves an FFN subvolume.
Args:
labels: 3d zyx number array with the segment labels
origins: dictionary mapping segment ID to origin information
output_path: path at which to save the segmentation in the form
of a .npz file
**misc_items: (optional) additional values to save
in the output file
"""
seg = segmentation.reduce_id_bits(labels)
gfile.MakeDirs(os.path.dirname(output_path))
with atomic_file(output_path) as fd:
np.savez_compressed(fd,
segmentation=seg,
origins=origins,
**misc_items)
示例4: save_checkpoint
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def save_checkpoint(self, path):
"""Saves a inference checkpoint to `path`."""
self.log_info('Saving inference checkpoint to %s.', path)
with timer_counter(self.counters, 'save_checkpoint'):
gfile.MakeDirs(os.path.dirname(path))
with storage.atomic_file(path) as fd:
seed_policy_state = None
if self.seed_policy is not None:
seed_policy_state = self.seed_policy.get_state()
np.savez_compressed(fd,
movement_policy=self.movement_policy.get_state(),
segmentation=self.segmentation,
seg_qprob=self.seg_prob,
seed=self.seed,
origins=self.origins,
overlaps=self.overlaps,
history=np.array(self.history),
history_deleted=np.array(self.history_deleted),
seed_policy_state=seed_policy_state,
counters=self.counters.dumps())
self.log_info('Inference checkpoint saved.')
示例5: fill_mesh
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def fill_mesh(mesh2fill, file: str, opt):
load_path = get_mesh_path(file, opt.num_aug)
if os.path.exists(load_path):
mesh_data = np.load(load_path, encoding='latin1', allow_pickle=True)
else:
mesh_data = from_scratch(file, opt)
np.savez_compressed(load_path, gemm_edges=mesh_data.gemm_edges, vs=mesh_data.vs, edges=mesh_data.edges,
edges_count=mesh_data.edges_count, ve=mesh_data.ve, v_mask=mesh_data.v_mask,
filename=mesh_data.filename, sides=mesh_data.sides,
edge_lengths=mesh_data.edge_lengths, edge_areas=mesh_data.edge_areas,
features=mesh_data.features)
mesh2fill.vs = mesh_data['vs']
mesh2fill.edges = mesh_data['edges']
mesh2fill.gemm_edges = mesh_data['gemm_edges']
mesh2fill.edges_count = int(mesh_data['edges_count'])
mesh2fill.ve = mesh_data['ve']
mesh2fill.v_mask = mesh_data['v_mask']
mesh2fill.filename = str(mesh_data['filename'])
mesh2fill.edge_lengths = mesh_data['edge_lengths']
mesh2fill.edge_areas = mesh_data['edge_areas']
mesh2fill.features = mesh_data['features']
mesh2fill.sides = mesh_data['sides']
示例6: combine_levels
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def combine_levels(directory):
"""
Merge all files in a single directory.
"""
files = sorted(glob.glob(os.path.join(directory, '*.npz')))
all_data = []
max_name_len = 0
for file in files:
with np.load(file) as data:
name = os.path.split(file)[1]
max_name_len = max(max_name_len, len(name))
all_data.append(data.items() + [('name', name)])
dtype = []
for key, val in all_data[0][:-1]:
dtype.append((key, val.dtype, val.shape))
dtype.append(('name', str, max_name_len))
combo_data = np.array([
tuple([val for key, val in data]) for data in all_data
], dtype=dtype)
np.savez_compressed(directory + '.npz', levels=combo_data)
示例7: save_twiss_file
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def save_twiss_file(self, twiss_list):
if self.tws_file is None:
tws_file_name = self.output_beam_file.replace("particles", "tws")
else:
tws_file_name = self.tws_file
self.folder_check_create(tws_file_name)
bx = np.array([tw.beta_x for tw in twiss_list])
by = np.array([tw.beta_y for tw in twiss_list])
ax = np.array([tw.alpha_x for tw in twiss_list])
ay = np.array([tw.alpha_x for tw in twiss_list])
s = np.array([tw.s for tw in twiss_list])
E = np.array([tw.E for tw in twiss_list])
emit_x = np.array([tw.emit_x for tw in twiss_list])
emit_y = np.array([tw.emit_y for tw in twiss_list])
np.savez_compressed(tws_file_name, beta_x=bx, beta_y=by, alpha_x=ax, alpha_y=ay, E=E, s=s,
emit_x=emit_x, emit_y=emit_y)
示例8: main
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def main():
parser = argparse.ArgumentParser()
parser.add_argument("src_path", type=str)
parser.add_argument("dst_path", type=str)
args = parser.parse_args()
src_path = Path(args.src_path)
dst_path = Path(args.dst_path)
assert src_path.is_file()
src_trajs = types.load(str(src_path))
dst_trajs = convert_trajs_to_sb(src_trajs)
os.makedirs(dst_path.parent, exist_ok=True)
with open(dst_path, "wb") as f:
np.savez_compressed(f, **dst_trajs)
print(f"Dumped rollouts to {dst_path}")
示例9: export_trimmed_glove_vectors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def export_trimmed_glove_vectors(vocab, glove_filename, trimmed_filename, dim):
"""Saves glove vectors in numpy array
Args:
vocab: dictionary vocab[word] = index
glove_filename: a path to a glove file
trimmed_filename: a path where to store a matrix in npy
dim: (int) dimension of embeddings
"""
embeddings = np.zeros([len(vocab), dim])
with open(glove_filename, encoding="utf8") as f:
for line in f:
line = line.strip().split(' ')
word = line[0]
embedding = [float(x) for x in line[1:]]
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
示例10: average_model_chainer
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def average_model_chainer(ifiles, ofile):
omodel = {}
# get keys from the first file
model = np.load(ifiles[0])
for x in model:
if 'model' in x:
print(x)
keys = [x.split('main/')[1] for x in model if 'model' in x]
print(keys)
for path in ifiles:
model = np.load(path)
for key in keys:
val = model['updater/model:main/{}'.format(key)]
if key not in omodel:
omodel[key] = val
else:
omodel[key] += val
for key in keys:
omodel[key] /= len(ifiles)
np.savez_compressed(ofile, **omodel)
示例11: main
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def main():
env = gym.make('FetchPickAndPlace-v0')
numItr = 100
initStateSpace = "random"
env.reset()
print("Reset!")
while len(actions) < numItr:
obs = env.reset()
print("ITERATION NUMBER ", len(actions))
goToGoal(env, obs)
fileName = "data_fetch"
fileName += "_" + initStateSpace
fileName += "_" + str(numItr)
fileName += ".npz"
np.savez_compressed(fileName, acs=actions, obs=observations, info=infos) # save the file
示例12: backup_batches
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def backup_batches(batches_vol, batches_seg, path, case_id):
# Create model directory of not existent
if not os.path.exists(path):
os.mkdir(path)
# Create subdirectory for the case if not existent
case_dir = os.path.join(path, "tmp.case_" + str(case_id).zfill(5))
if not os.path.exists(case_dir):
os.mkdir(case_dir)
# Backup volume batches
if batches_vol is not None:
for i, batch in enumerate(batches_vol):
out_path = os.path.join(case_dir,
"batch_vol." + str(i))
np.savez(out_path, data=batch)
# Backup segmentation batches
if batches_seg is not None:
for i, batch in enumerate(batches_seg):
out_path = os.path.join(case_dir,
"batch_seg." + str(i))
np.savez_compressed(out_path, data=batch)
# Load a MRI object from a npz for fast access
示例13: generate_large_matrix
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def generate_large_matrix():
rows, cols = 1000000, 500
print 'Test serializing a %i x %i matrix ...' % (rows, cols)
t = time.time()
vecs = numpy.random.normal(0,1,(rows,cols))
print 'Matrix constructed, spent %.2f s' % (time.time() - t)
f1 = open('test_data1', 'wb')
t = time.time()
print 'saving as numpy npz format ...'
numpy.savez_compressed(f1, vecs)
print 'save done, spent %.2f s' % (time.time() - t)
f1.close()
f2 = open('test_data2', 'wb')
t = time.time()
print 'saving as self-defined format ...'
for v in vecs:
f2.write(pickle.dumps(v, -1))
f2.close()
print 'save done, spent %.2f s' % (time.time() - t)
pass
示例14: export_trimmed_glove_vectors
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def export_trimmed_glove_vectors(vocab, glove_filename, trimmed_filename, dim):
"""Saves glove vectors in numpy array
Args:
vocab: dictionary vocab[word] = index
glove_filename: a path to a glove file
trimmed_filename: a path where to store a matrix in npy
dim: (int) dimension of embeddings
"""
embeddings = np.zeros([len(vocab), dim])
with open(glove_filename) as f:
for line in f:
line = line.strip().split(' ')
word = line[0]
embedding = [float(x) for x in line[1:]]
if word in vocab:
word_idx = vocab[word]
embeddings[word_idx] = np.asarray(embedding)
np.savez_compressed(trimmed_filename, embeddings=embeddings)
示例15: encode
# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez_compressed [as 別名]
def encode(self, unischema_field, value):
expected_dtype = unischema_field.numpy_dtype
if isinstance(value, np.ndarray):
if expected_dtype != value.dtype.type:
raise ValueError('Unexpected type of {} feature. '
'Expected {}. Got {}'.format(unischema_field.name, expected_dtype, value.dtype))
expected_shape = unischema_field.shape
if not _is_compliant_shape(value.shape, expected_shape):
raise ValueError('Unexpected dimensions of {} feature. '
'Expected {}. Got {}'.format(unischema_field.name, expected_shape, value.shape))
else:
raise ValueError('Unexpected type of {} feature. '
'Expected ndarray of {}. Got {}'.format(unischema_field.name, expected_dtype, type(value)))
memfile = BytesIO()
np.savez_compressed(memfile, arr=value)
return bytearray(memfile.getvalue())