當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.savez方法代碼示例

本文整理匯總了Python中numpy.savez方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.savez方法的具體用法?Python numpy.savez怎麽用?Python numpy.savez使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.savez方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_consistency

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_consistency(dump=False):
    shape = (299, 299)
    _get_model()
    _get_data(shape)
    if dump:
        _dump_images(shape)
        gt = None
    else:
        gt = {n: mx.nd.array(a) for n, a in np.load('data/inception-v3-dump.npz').items()}
    data = np.load('data/test_images_%d_%d.npy'%shape)
    sym, arg_params, aux_params = mx.model.load_checkpoint('model/Inception-7', 1)
    arg_params['data'] = data
    arg_params['softmax_label'] = np.random.randint(low=1, high=1000, size=(data.shape[0],))
    ctx_list = [{'ctx': mx.gpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}},
                {'ctx': mx.cpu(0), 'data': data.shape, 'type_dict': {'data': data.dtype}}]
    gt = check_consistency(sym, ctx_list, arg_params=arg_params, aux_params=aux_params,
                           tol=1e-3, grad_req='null', raise_on_err=False, ground_truth=gt)
    if dump:
        np.savez('data/inception-v3-dump.npz', **{n: a.asnumpy() for n, a in gt.items()}) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:21,代碼來源:test_forward.py

示例2: _flush

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def _flush(self):
        """
        Method to flush internal state to disk.
        """
        t1, t2 = str(time.time()).split(".")
        state_path = os.path.join(self.ep_directory, "state_{}_{}.npz".format(t1, t2))
        if hasattr(self.env, "unwrapped"):
            env_name = self.env.unwrapped.__class__.__name__
        else:
            env_name = self.env.__class__.__name__
        np.savez(
            state_path,
            states=np.array(self.states),
            action_infos=self.action_infos,
            env=env_name,
        )
        self.states = []
        self.action_infos = [] 
開發者ID:StanfordVL,項目名稱:robosuite,代碼行數:20,代碼來源:data_collection_wrapper.py

示例3: process_tab

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def process_tab(fname, min_trans=MIN_TRANSCRIPTS):
    X, cells, genes = load_tab(fname)

    gt_idx = [ i for i, s in enumerate(np.sum(X != 0, axis=1))
               if s >= min_trans ]
    X = X[gt_idx, :]
    cells = cells[gt_idx]
    if len(gt_idx) == 0:
        print('Warning: 0 cells passed QC in {}'.format(fname))
    if fname.endswith('.txt'):
        cache_prefix = '.'.join(fname.split('.')[:-1])
    elif fname.endswith('.txt.gz'):
        cache_prefix = '.'.join(fname.split('.')[:-2])
    elif fname.endswith('.tsv'):
        cache_prefix = '.'.join(fname.split('.')[:-1])
    elif fname.endswith('.tsv.gz'):
        cache_prefix = '.'.join(fname.split('.')[:-2])
    else:
        sys.stderr.write('Tab files should end with ".txt" or ".tsv"\n')
        exit(1)
        
    cache_fname = cache_prefix + '.npz'
    np.savez(cache_fname, X=X, genes=genes)

    return X, cells, genes 
開發者ID:brianhie,項目名稱:scanorama,代碼行數:27,代碼來源:process.py

示例4: save_load_means

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def save_load_means(means_filename, image_filenames, recalculate=False):
    '''
    Calculate and save the means of RGB channels in image dataset if the mean file does not exist.
    Otherwise read the means directly from the mean file.
    means_filename: npz filename for image channel means
    image_filenames: list of image filenames
    recalculate: recalculate image channel means regardless the existence of mean file
    '''

    if (not os.path.isfile(means_filename)) or recalculate:
        print('Calculating pixel means for each channel of images...')
        channel_means = image_channel_means(image_filenames=image_filenames)
        np.savez(means_filename, channel_means=channel_means)
    else:
        channel_means = np.load(means_filename)['channel_means']

    return channel_means 
開發者ID:leimao,項目名稱:DeepLab_v3,代碼行數:19,代碼來源:utils.py

示例5: test_savez_filename_clashes

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_savez_filename_clashes(self):
        # Test that issue #852 is fixed
        # and savez functions in multithreaded environment

        def writer(error_list):
            with temppath(suffix='.npz') as tmp:
                arr = np.random.randn(500, 500)
                try:
                    np.savez(tmp, arr=arr)
                except OSError as err:
                    error_list.append(err)

        errors = []
        threads = [threading.Thread(target=writer, args=(errors,))
                   for j in range(3)]
        for t in threads:
            t.start()
        for t in threads:
            t.join()

        if errors:
            raise AssertionError(errors) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:24,代碼來源:test_io.py

示例6: test_closing_fid

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:25,代碼來源:test_io.py

示例7: test_npzfile_dict

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_npzfile_dict():
    s = BytesIO()
    x = np.zeros((3, 3))
    y = np.zeros((3, 3))

    np.savez(s, x=x, y=y)
    s.seek(0)

    z = np.load(s)

    assert_('x' in z)
    assert_('y' in z)
    assert_('x' in z.keys())
    assert_('y' in z.keys())

    for f, a in z.items():
        assert_(f in ['x', 'y'])
        assert_equal(a.shape, (3, 3))

    assert_(len(z.items()) == 2)

    for f in z:
        assert_(f in ['x', 'y'])

    assert_('x' in z.keys()) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:27,代碼來源:test_io.py

示例8: test_large_archive

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_large_archive():
    # Regression test for product of saving arrays with dimensions of array
    # having a product that doesn't fit in int32.  See gh-7598 for details.
    try:
        a = np.empty((2**30, 2), dtype=np.uint8)
    except MemoryError:
        pytest.skip("Could not create large file")

    fname = os.path.join(tempdir, "large_archive")

    with open(fname, "wb") as f:
        np.savez(f, arr=a)

    with open(fname, "rb") as f:
        new_a = np.load(f)["arr"]

    assert_(a.shape == new_a.shape) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:19,代碼來源:test_format.py

示例9: save

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def save(self, save_dir):
        """Save trajectories to save_dir in NumPy compressed-array format, per-agent.

        Our format consists of a dictionary with keys -- e.g. 'observations', 'actions'
        and 'rewards' -- containing lists of NumPy arrays, one for each episode.

        :param save_dir: (str) path to save trajectories; will create directory if needed.
        :return None
        """
        os.makedirs(save_dir, exist_ok=True)

        save_paths = []
        for dict_idx, agent_idx in enumerate(self.agent_indices):
            agent_dicts = self.full_traj_dicts[dict_idx]
            dump_dict = {k: np.asarray(v) for k, v in agent_dicts.items()}

            save_path = os.path.join(save_dir, f"agent_{agent_idx}.npz")
            np.savez(save_path, **dump_dict)
            save_paths.append(save_path)
        return save_paths 
開發者ID:HumanCompatibleAI,項目名稱:adversarial-policies,代碼行數:22,代碼來源:wrappers.py

示例10: test_load_refcount

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_load_refcount():
    # Check that objects returned by np.load are directly freed based on
    # their refcount, rather than needing the gc to collect them.

    f = BytesIO()
    np.savez(f, [1, 2, 3])
    f.seek(0)

    assert_(gc.isenabled())
    gc.disable()
    try:
        gc.collect()
        np.load(f)
        # gc.collect returns the number of unreachable objects in cycles that
        # were found -- we are checking that no cycles were created by np.load
        n_objects_in_cycles = gc.collect()
    finally:
        gc.enable()
    assert_equal(n_objects_in_cycles, 0) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:21,代碼來源:test_io.py

示例11: test_large_archive

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def test_large_archive():
    # Regression test for product of saving arrays with dimensions of array
    # having a product that doesn't fit in int32.  See gh-7598 for details.
    try:
        a = np.empty((2**30, 2), dtype=np.uint8)
    except MemoryError:
        raise SkipTest("Could not create large file")

    fname = os.path.join(tempdir, "large_archive")

    with open(fname, "wb") as f:
        np.savez(f, arr=a)

    with open(fname, "rb") as f:
        new_a = np.load(f)["arr"]

    assert_(a.shape == new_a.shape) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:test_format.py

示例12: savez_compressed

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def savez_compressed(file, *args, **kwds):
    """
    Save several arrays into a single file in compressed ``.npz`` format.

    If keyword arguments are given, then filenames are taken from the keywords.
    If arguments are passed in with no keywords, then stored file names are
    arr_0, arr_1, etc.

    Parameters
    ----------
    file : str
        File name of ``.npz`` file.
    args : Arguments
        Function arguments.
    kwds : Keyword arguments
        Keywords.

    See Also
    --------
    numpy.savez : Save several arrays into an uncompressed ``.npz`` file format
    numpy.load : Load the files created by savez_compressed.

    """
    _savez(file, args, kwds, True) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:npyio.py

示例13: extract_features_wrapper

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def extract_features_wrapper(paths, path2gt, model='vggish', save_as=False):
    """Wrapper function for extracting features (MusiCNN, VGGish or OpenL3) per batch.
       If a save_as string argument is passed, the features wiil be saved in 
       the specified file.
    """
    if model == 'vggish':
        feature_extractor = extract_vggish_features
    elif model == 'openl3' or model == 'musicnn':
        feature_extractor = extract_other_features
    else:
        raise NotImplementedError('Current implementation only supports MusiCNN, VGGish and OpenL3 features')

    batch_size = config['batch_size']
    first_batch = True
    for batch_id in tqdm(range(ceil(len(paths)/batch_size))):
        batch_paths = paths[(batch_id)*batch_size:(batch_id+1)*batch_size]
        [x, y, refs] = feature_extractor(batch_paths, path2gt, model)
        if first_batch:
            [X, Y, IDS] = [x, y, refs]
            first_batch = False
        else:
            X = np.concatenate((X, x), axis=0)
            Y = np.concatenate((Y, y), axis=0)
            IDS = np.concatenate((IDS, refs), axis=0)
    
    if save_as:  # save data to file
        # create a directory where to store the extracted training features
        audio_representations_folder = DATA_FOLDER + 'audio_representations/'
        if not os.path.exists(audio_representations_folder):
            os.makedirs(audio_representations_folder)
        np.savez(audio_representations_folder + save_as, X=X, Y=Y, IDS=IDS)
        print('Audio features stored: ', save_as)

    return [X, Y, IDS] 
開發者ID:jordipons,項目名稱:sklearn-audio-transfer-learning,代碼行數:36,代碼來源:audio_transfer_learning.py

示例14: load_dataset

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def load_dataset(path):
    download_dataset(path)

    # training data
    data = [np.load(os.path.join(path, 'cifar-10-batches-py',
                                 'data_batch_%d' % (i + 1))) for i in range(5)]
    X_train = np.vstack([d['data'] for d in data])
    y_train = np.hstack([np.asarray(d['labels'], np.int8) for d in data])

    # test data
    data = np.load(os.path.join(path, 'cifar-10-batches-py', 'test_batch'))
    X_test = data['data']
    y_test = np.asarray(data['labels'], np.int8)

    # reshape
    X_train = X_train.reshape(-1, 3, 32, 32)
    X_test = X_test.reshape(-1, 3, 32, 32)

    # normalize
    try:
        mean_std = np.load(os.path.join(path, 'cifar-10-mean_std.npz'))
        mean = mean_std['mean']
        std = mean_std['std']
    except IOError:
        mean = X_train.mean(axis=(0, 2, 3), keepdims=True).astype(np.float32)
        std = X_train.std(axis=(0, 2, 3), keepdims=True).astype(np.float32)
        np.savez(os.path.join(path, 'cifar-10-mean_std.npz'),
                 mean=mean, std=std)
    X_train = (X_train - mean) / std
    X_test = (X_test - mean) / std

    return X_train, y_train, X_test, y_test 
開發者ID:Lasagne,項目名稱:Recipes,代碼行數:34,代碼來源:cifar10.py

示例15: runner

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import savez [as 別名]
def runner(env, policy_func, load_model_path, timesteps_per_batch, number_trajs,
           stochastic_policy, save=False, reuse=False):

    # Setup network
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space, reuse=reuse)
    U.initialize()
    # Prepare for rollouts
    # ----------------------------------------
    U.load_state(load_model_path)

    obs_list = []
    acs_list = []
    len_list = []
    ret_list = []
    for _ in tqdm(range(number_trajs)):
        traj = traj_1_generator(pi, env, timesteps_per_batch, stochastic=stochastic_policy)
        obs, acs, ep_len, ep_ret = traj['ob'], traj['ac'], traj['ep_len'], traj['ep_ret']
        obs_list.append(obs)
        acs_list.append(acs)
        len_list.append(ep_len)
        ret_list.append(ep_ret)
    if stochastic_policy:
        print('stochastic policy:')
    else:
        print('deterministic policy:')
    if save:
        filename = load_model_path.split('/')[-1] + '.' + env.spec.id
        np.savez(filename, obs=np.array(obs_list), acs=np.array(acs_list),
                 lens=np.array(len_list), rets=np.array(ret_list))
    avg_len = sum(len_list)/len(len_list)
    avg_ret = sum(ret_list)/len(ret_list)
    print("Average length:", avg_len)
    print("Average return:", avg_ret)
    return avg_len, avg_ret


# Sample one trajectory (until trajectory end) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:42,代碼來源:run_mujoco.py


注:本文中的numpy.savez方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。