當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.s_方法代碼示例

本文整理匯總了Python中numpy.s_方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.s_方法的具體用法?Python numpy.s_怎麽用?Python numpy.s_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.s_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def update(self, actions, board, layers, backdrop, things, the_plot):
    # Move up or down as directed if there is room.
    action = Actions.STAY if actions is None else actions[self.character]
    if action == Actions.UP:
      if self._paddle_top > 1: self._paddle_top -= 1
    elif action == Actions.DOWN:
      if self._paddle_top < 7: self._paddle_top += 1

    # Repaint the paddle. Note "blinking" effect if the ball slips past us.
    self.curtain[:, self._paddle_col] = False
    blink = (things['@'].position.col <= self._paddle_col   # "past" us depends
             if self.character == '1' else                  # on which paddle
             things['@'].position.col >= self._paddle_col)  # we are.
    if not blink or (the_plot.frame % 2 == 0):
      paddle_rows = np.s_[self._paddle_top:(self._paddle_top + 2)]
      self.curtain[paddle_rows, self._paddle_col] = True 
開發者ID:deepmind,項目名稱:pycolab,代碼行數:18,代碼來源:tennnnnnnnnnnnnnnnnnnnnnnnis.py

示例2: test_prepend_not_one

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_prepend_not_one(self):
        assign = self.assign
        s_ = np.s_

        a = np.zeros(5)

        # Too large and not only ones.
        assert_raises(ValueError, assign, a, s_[...],  np.ones((2, 1)))

        with warnings.catch_warnings():
            # Will be a ValueError as well.
            warnings.simplefilter("error", DeprecationWarning)
            assert_raises(DeprecationWarning, assign, a, s_[[1, 2, 3],],
                          np.ones((2, 1)))
            assert_raises(DeprecationWarning, assign, a, s_[[[1], [2]],],
                          np.ones((2,2,1))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:18,代碼來源:test_indexing.py

示例3: _initialize_factor_transition

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def _initialize_factor_transition(self):
        order = self.factor_order * self.k_factors
        k_factors = self.k_factors

        # Initialize the parameters
        self.parameters['factor_transition'] = (
            self.factor_order * self.k_factors**2)

        # Setup fixed components of state space matrices
        # VAR(p) for factor transition
        if self.k_factors > 0:
            if self.factor_order > 0:
                self.ssm['transition', k_factors:order, :order - k_factors] = (
                    np.eye(order - k_factors))

            self.ssm['selection', :k_factors, :k_factors] = np.eye(k_factors)
            # Identification requires constraining the state covariance to an
            # identity matrix
            self.ssm['state_cov', :k_factors, :k_factors] = np.eye(k_factors)

        # Setup indices of state space matrices
        self._idx_factor_transition = np.s_['transition', :k_factors, :order] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:dynamic_factor.py

示例4: _initialize_error_transition_var

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def _initialize_error_transition_var(self):
        k_endog = self.k_endog
        _factor_order = self._factor_order
        _error_order = self._error_order

        # Initialize the parameters
        self.parameters['error_transition'] = _error_order * k_endog

        # Fixed components already setup above

        # Setup indices of state space matrices
        # Here we want to set all of the elements of the coefficient matrices,
        # the same as in a VAR specification
        self._idx_error_transition = np.s_[
            'transition',
            _factor_order:_factor_order + k_endog,
            _factor_order:_factor_order + _error_order] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:19,代碼來源:dynamic_factor.py

示例5: readPredMap

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def readPredMap(mapFile):
    try:
        with open(mapFile, 'r') as f:
            En = np.array(f.readline().split(), dtype=np.dtype(float))
            A = np.loadtxt(f, unpack =False)
    except:
        print('\033[1m' + ' Map data file not found \n' + '\033[0m')
        return

    X = A[:,0]
    Y = A[:,1]
    A = np.delete(A, np.s_[0:2], 1)
    print(' Shape map: ' + str(A.shape))
    return X, Y, A, En

#################################################################### 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:18,代碼來源:SpectraLearnPredict.py

示例6: readLearnFile

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def readLearnFile(learnFile):
    try:
        with open(learnFile, 'r') as f:
            M = np.loadtxt(f, unpack =False)
    except:
        print('\033[1m' + ' Learn data file not found \n' + '\033[0m')
        return

    learnFileRoot = os.path.splitext(learnFile)[0]

    #En = np.delete(np.array(M[0,:]),np.s_[0:1],0)
    #M = np.delete(np.array(M[:,1:]),np.s_[0:1],0)
    En = np.delete(np.array(M[0,:]),np.s_[0:1],0)
    M = np.delete(M,np.s_[0:1],0)
    Cl = np.asarray(['{:.2f}'.format(x) for x in M[:,0]]).reshape(-1,1)
    M = np.delete(M,np.s_[0:1],1)
    
    print("En:",En.shape)
    print("M:",M.shape)
    return En, M, Cl, learnFileRoot

#################################################################### 
開發者ID:feranick,項目名稱:SpectralMachine,代碼行數:24,代碼來源:SplitCrossValidation._legacy1.py

示例7: test_e_i

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_e_i():
    assert_almost_equal(e_i(7, 5, output='r'),
                        array([[0., 0., 0., 0., 0., 1., 0.]])
                        )

    assert_almost_equal(e_i(5, [0, 4, 4, 4, 1]),
                        array([[1., 0., 0., 0., 0.],
                               [0., 0., 0., 0., 1.],
                               [0., 0., 0., 0., 0.],
                               [0., 0., 0., 0., 0.],
                               [0., 1., 1., 1., 0.]])
                        )

    assert_almost_equal(e_i(5, s_[1:3]),
                        array([[0., 0.],
                               [1., 0.],
                               [0., 1.],
                               [0., 0.],
                               [0., 0.]])
                        )

    assert_almost_equal(e_i(5, slice(1, 5, 2), output='r'),
                        array([[0., 1., 0., 0., 0.],
                               [0., 0., 0., 1., 0.]])
                        ) 
開發者ID:ilayn,項目名稱:harold,代碼行數:27,代碼來源:test_aux_linalg.py

示例8: test_read_direct

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_read_direct():

    with pyfive.File(EARLIEST_HDF5_FILE) as hfile:
        dset1 = hfile['dataset1']

        arr = np.zeros(4)
        dset1.read_direct(arr)
        assert_array_equal(arr, [0, 1, 2, 3])

        arr = np.zeros(4)
        dset1.read_direct(arr, np.s_[:2], np.s_[:2])
        assert_array_equal(arr, [0, 1, 0, 0])

        arr = np.zeros(4)
        dset1.read_direct(arr, np.s_[1:3], np.s_[2:])
        assert_array_equal(arr, [0, 0, 1, 2]) 
開發者ID:jjhelmus,項目名稱:pyfive,代碼行數:18,代碼來源:test_high_level.py

示例9: initialize_from

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def initialize_from(self, filename, ob_stat=None):
        """
        Initializes weights from another policy, which must have the same architecture (variable names),
        but the weight arrays can be smaller than the current policy.
        """
        with h5py.File(filename, 'r') as f:
            f_var_names = []
            f.visititems(lambda name, obj: f_var_names.append(name) if isinstance(obj, h5py.Dataset) else None)
            assert set(v.name for v in self.all_variables) == set(f_var_names), 'Variable names do not match'

            init_vals = []
            for v in self.all_variables:
                shp = v.get_shape().as_list()
                f_shp = f[v.name].shape
                assert len(shp) == len(f_shp) and all(a >= b for a, b in zip(shp, f_shp)), \
                    'This policy must have more weights than the policy to load'
                init_val = v.eval()
                # ob_mean and ob_std are initialized with nan, so set them manually
                if 'ob_mean' in v.name:
                    init_val[:] = 0
                    init_mean = init_val
                elif 'ob_std' in v.name:
                    init_val[:] = 0.001
                    init_std = init_val
                # Fill in subarray from the loaded policy
                init_val[tuple([np.s_[:s] for s in f_shp])] = f[v.name]
                init_vals.append(init_val)
            self.set_all_vars(*init_vals)

        if ob_stat is not None:
            ob_stat.set_from_init(init_mean, init_std, init_count=1e5) 
開發者ID:openai,項目名稱:evolution-strategies-starter,代碼行數:33,代碼來源:policies.py

示例10: plot_mcontour

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def plot_mcontour(self, ndim0, ndim1, z, show_mode):
        "use mayavi.mlab to plot contour."
        if not mayavi_installed:
            self.__logger.info("Mayavi is not installed on your device.")
            return
        #do 2d interpolation
        #get slice object
        s = np.s_[0:ndim0:1, 0:ndim1:1]
        x, y = np.ogrid[s]
        mx, my = np.mgrid[s]
        #use cubic 2d interpolation
        interpfunc = interp2d(x, y, z, kind='cubic')
        newx = np.linspace(0, ndim0, 600)
        newy = np.linspace(0, ndim1, 600)
        newz = interpfunc(newx, newy)
        #mlab
        face = mlab.surf(newx, newy, newz, warp_scale=2)
        mlab.axes(xlabel='x', ylabel='y', zlabel='z')
        mlab.outline(face)
        #save or show
        if show_mode == 'show':
            mlab.show()
        elif show_mode == 'save':
            mlab.savefig('mlab_contour3d.png')
        else:
            raise ValueError('Unrecognized show mode parameter : ' +
                             show_mode)

        return 
開發者ID:PytLab,項目名稱:VASPy,代碼行數:31,代碼來源:electro.py

示例11: test_prepend_not_one

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_prepend_not_one(self):
        assign = self.assign
        s_ = np.s_
        a = np.zeros(5)

        # Too large and not only ones.
        assert_raises(ValueError, assign, a, s_[...],  np.ones((2, 1)))
        assert_raises(ValueError, assign, a, s_[[1, 2, 3],], np.ones((2, 1)))
        assert_raises(ValueError, assign, a, s_[[[1], [2]],], np.ones((2,2,1))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:11,代碼來源:test_indexing.py

示例12: test_simple_broadcasting_errors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_simple_broadcasting_errors(self):
        assign = self.assign
        s_ = np.s_
        a = np.zeros((5, 1))

        assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2)))
        assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0)))
        assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2)))
        assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0)))
        assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1))) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:12,代碼來源:test_indexing.py

示例13: get_segment_data_slice

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def get_segment_data_slice(self, datafile, dsname, n_iter, seg_id, slice_=None, index_data=None,
                               iter_prec=None):
        '''Return the data from the dataset named ``dsname`` within the given ``datafile`` (an open
        h5py.File object) for the given iteration and segment. By default, it is assumed that the
        dataset is stored in the iteration group for iteration ``n_iter``, but if ``index_data``
        is provided, it must be an iterable (preferably a simple array) of (n_iter,seg_id) pairs,
        and the index in the ``index_data`` iterable of the matching n_iter/seg_id pair is used as
        the index of the data to retrieve.
        
        If an optional ``slice_`` is provided, then the given slicing tuple is appended to that
        used to retrieve the segment-specific data (i.e. it can be used to pluck a subset of the
        data that would otherwise be returned).
        '''

        if slice_ is None:
            slice_ = numpy.s_[...] 
                    
        if index_data is not None:
            dataset = datafile[dsname]

            for i, (i_n_iter,i_seg_id) in enumerate(index_data):
                if (i_n_iter,i_seg_id) == (n_iter,seg_id):
                    break
            else:
                raise KeyError((n_iter,seg_id))
            
            itpl = (i,) + slice_
            return dataset[itpl]
        else:
            if not iter_prec:
                iter_prec = datafile.attrs.get('west_iter_prec', self.data_manager.default_iter_prec)
            igname_tail = 'iter_{:0{iter_prec:d}d}'.format(int(n_iter),iter_prec=int(iter_prec))
            try:
                iter_group = datafile['/iterations/' + igname_tail]
            except KeyError:
                iter_group = datafile[igname_tail]
            
            dataset = iter_group[dsname]
            itpl = (seg_id,) + slice_

            return dataset[itpl] 
開發者ID:westpa,項目名稱:westpa,代碼行數:43,代碼來源:w_trace.py

示例14: test_simple_broadcasting_errors

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def test_simple_broadcasting_errors(self):
        assign = self.assign
        s_ = np.s_

        a = np.zeros((5, 1))
        assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 2)))
        assert_raises(ValueError, assign, a, s_[...], np.zeros((5, 0)))

        assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 2)))
        assert_raises(ValueError, assign, a, s_[:, [0]], np.zeros((5, 0)))

        assert_raises(ValueError, assign, a, s_[[0], :], np.zeros((2, 1))) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:14,代碼來源:test_indexing.py

示例15: _initialize_loadings

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import s_ [as 別名]
def _initialize_loadings(self):
        # Initialize the parameters
        self.parameters['factor_loadings'] = self.k_endog * self.k_factors

        # Setup fixed components of state space matrices
        if self.error_order > 0:
            start = self._factor_order
            end = self._factor_order + self.k_endog
            self.ssm['design', :, start:end] = np.eye(self.k_endog)

        # Setup indices of state space matrices
        self._idx_loadings = np.s_['design', :, :self.k_factors] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:14,代碼來源:dynamic_factor.py


注:本文中的numpy.s_方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。