當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy.rollaxis方法代碼示例

本文整理匯總了Python中numpy.rollaxis方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy.rollaxis方法的具體用法?Python numpy.rollaxis怎麽用?Python numpy.rollaxis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numpy的用法示例。


在下文中一共展示了numpy.rollaxis方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: apply_transform

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def apply_transform(x,
                    transform_matrix,
                    fill_mode='nearest',
                    cval=0.):
    x = np.rollaxis(x, 0, 0)
    final_affine_matrix = transform_matrix[:2, :2]
    final_offset = transform_matrix[:2, 2]
    channel_images = [ndi.interpolation.affine_transform(
        x_channel,
        final_affine_matrix,
        final_offset,
        order=0,
        mode=fill_mode,
        cval=cval) for x_channel in x]
    x = np.stack(channel_images, axis=0)
    x = np.rollaxis(x, 0, 0 + 1)
    return x 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:19,代碼來源:capsulenet.py

示例2: _indices

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def _indices(self, slice_index=None):
        # get a int-array containing all indices in the first axis.
        if slice_index is None:
            slice_index = self._current_slice_
        #try:
        indices = np.indices(self._realshape_, dtype=int)
        indices = indices[(slice(None),)+slice_index]
        indices = np.rollaxis(indices, 0, indices.ndim).reshape(-1,self._realndim_)
            #print indices_
            #if not np.all(indices==indices__):
            #    import ipdb; ipdb.set_trace()
        #except:
        #    indices = np.indices(self._realshape_, dtype=int)
        #    indices = indices[(slice(None),)+slice_index]
        #    indices = np.rollaxis(indices, 0, indices.ndim)
        return indices 
開發者ID:sods,項目名稱:paramz,代碼行數:18,代碼來源:param.py

示例3: _do_random_crop

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def _do_random_crop(self, image_array):
        """IMPORTANT: random crop only works for classification since the
        current implementation does no transform bounding boxes"""
        height = image_array.shape[0]
        width = image_array.shape[1]
        x_offset = np.random.uniform(0, self.translation_factor * width)
        y_offset = np.random.uniform(0, self.translation_factor * height)
        offset = np.array([x_offset, y_offset])
        scale_factor = np.random.uniform(self.zoom_range[0],
                                         self.zoom_range[1])
        crop_matrix = np.array([[scale_factor, 0],
                                [0, scale_factor]])

        image_array = np.rollaxis(image_array, axis=-1, start=0)
        image_channel = [ndi.interpolation.affine_transform(image_channel,
                         crop_matrix, offset=offset, order=0, mode='nearest',
                         cval=0.0) for image_channel in image_array]

        image_array = np.stack(image_channel, axis=0)
        image_array = np.rollaxis(image_array, 0, 3)
        return image_array 
開發者ID:oarriaga,項目名稱:face_classification,代碼行數:23,代碼來源:data_augmentation.py

示例4: do_random_rotation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def do_random_rotation(self, image_array):
        """IMPORTANT: random rotation only works for classification since the
        current implementation does no transform bounding boxes"""
        height = image_array.shape[0]
        width = image_array.shape[1]
        x_offset = np.random.uniform(0, self.translation_factor * width)
        y_offset = np.random.uniform(0, self.translation_factor * height)
        offset = np.array([x_offset, y_offset])
        scale_factor = np.random.uniform(self.zoom_range[0],
                                         self.zoom_range[1])
        crop_matrix = np.array([[scale_factor, 0],
                                [0, scale_factor]])

        image_array = np.rollaxis(image_array, axis=-1, start=0)
        image_channel = [ndi.interpolation.affine_transform(image_channel,
                         crop_matrix, offset=offset, order=0, mode='nearest',
                         cval=0.0) for image_channel in image_array]

        image_array = np.stack(image_channel, axis=0)
        image_array = np.rollaxis(image_array, 0, 3)
        return image_array 
開發者ID:oarriaga,項目名稱:face_classification,代碼行數:23,代碼來源:data_augmentation.py

示例5: __init__

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def __init__(self, x, y, axis=0, extrapolate=None):
        x = _asarray_validated(x, check_finite=False, as_inexact=True)
        y = _asarray_validated(y, check_finite=False, as_inexact=True)

        axis = axis % y.ndim

        xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1))
        yp = np.rollaxis(y, axis)

        dk = self._find_derivatives(xp, yp)
        data = np.hstack((yp[:, None, ...], dk[:, None, ...]))

        _b = BPoly.from_derivatives(x, data, orders=None)
        super(PchipInterpolator, self).__init__(_b.c, _b.x,
                                                extrapolate=extrapolate)
        self.axis = axis 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:18,代碼來源:_cubic.py

示例6: create_spline

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def create_spline(y, yp, x, h):
    """Create a cubic spline given values and derivatives.

    Formulas for the coefficients are taken from interpolate.CubicSpline.

    Returns
    -------
    sol : PPoly
        Constructed spline as a PPoly instance.
    """
    from scipy.interpolate import PPoly

    n, m = y.shape
    c = np.empty((4, n, m - 1), dtype=y.dtype)
    slope = (y[:, 1:] - y[:, :-1]) / h
    t = (yp[:, :-1] + yp[:, 1:] - 2 * slope) / h
    c[0] = t / h
    c[1] = (slope - yp[:, :-1]) / h - t
    c[2] = yp[:, :-1]
    c[3] = y[:, :-1]
    c = np.rollaxis(c, 1)

    return PPoly(c, x, extrapolate=True, axis=1) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:_bvp.py

示例7: _nanpercentile

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def _nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
                   interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage

    """
    if axis is None or a.ndim == 1:
        part = a.ravel()
        result = _nanpercentile1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanpercentile1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.rollaxis(result, axis)

    if out is not None:
        out[...] = result
    return result 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:nanfunctions.py

示例8: _nanpercentile

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def _nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
                   interpolation='linear'):
    """
    Private function that doesn't support extended axis or keepdims.
    These methods are extended to this function using _ureduce
    See nanpercentile for parameter usage

    """
    if axis is None:
        part = a.ravel()
        result = _nanpercentile1d(part, q, overwrite_input, interpolation)
    else:
        result = np.apply_along_axis(_nanpercentile1d, axis, a, q,
                                     overwrite_input, interpolation)
        # apply_along_axis fills in collapsed axis with results.
        # Move that axis to the beginning to match percentile's
        # convention.
        if q.ndim != 0:
            result = np.rollaxis(result, axis)

    if out is not None:
        out[...] = result
    return result 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:25,代碼來源:nanfunctions.py

示例9: SVHN_dataload

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def SVHN_dataload():
    import numpy as np
    import scipy.io as sio
    import os
    pathname = 'data/SVHN'
    fn = 'train_32x32.mat'
    loaddata = sio.loadmat(os.path.join(pathname, fn))
    Traindata = loaddata['X']
    trainlabel = loaddata['y']
    Traindata = np.rollaxis(Traindata, 3, 0)
    fn = 'test_32x32.mat'
    loadtdata = sio.loadmat(os.path.join(pathname, fn))
    Testdata = loadtdata['X']
    testlabel = loadtdata['y']
    Testdata = np.rollaxis(Testdata, 3, 0)
    return Traindata, trainlabel, Testdata, testlabel


# %% MNIST-M load 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:21,代碼來源:DatasetLoad.py

示例10: synthetic_digits_small_dataload

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def synthetic_digits_small_dataload():
    import os
    import scipy.io as sio
    import numpy as np

    filepath = '/home/damodara/OT/DA/datasets/SynthDigits'
    train_fname = os.path.join(filepath, 'synth_train_32x32_small.mat')
    loaddata = sio.loadmat(train_fname)
    Traindata = loaddata['X']
    train_label = loaddata['y']
    #
    test_fname = os.path.join(filepath, 'synth_test_32x32_small.mat')
    loaddata = sio.loadmat(test_fname)
    Testdata = loaddata['X']
    test_label = loaddata['y']
    Traindata = np.rollaxis(Traindata, 3, 0)
    Testdata = np.rollaxis(Testdata, 3, 0)

    return Traindata, train_label, Testdata, test_label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:21,代碼來源:DatasetLoad.py

示例11: synthetic_digits_dataload

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def synthetic_digits_dataload():
    import os
    import scipy.io as sio
    import numpy as np

    filepath = '/home/damodara/OT/DA/datasets/SynthDigits'
    train_fname = os.path.join(filepath, 'synth_train_32x32.mat')
    loaddata = sio.loadmat(train_fname)
    Traindata = loaddata['X']
    train_label = loaddata['y']
    #
    test_fname = os.path.join(filepath, 'synth_test_32x32.mat')
    loaddata = sio.loadmat(test_fname)
    Testdata = loaddata['X']
    test_label = loaddata['y']

    Traindata = np.rollaxis(Traindata, 3, 0)
    Testdata = np.rollaxis(Testdata, 3, 0)
    return Traindata, train_label, Testdata, test_label


# %% stl9 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:24,代碼來源:DatasetLoad.py

示例12: multi_label_img_to_multi_hot

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def multi_label_img_to_multi_hot(np_array):
    """
    TODO: There must be a faster way of doing this + ajust to correct input format (see gt_tensor_to_one_hot)
    Convert ground truth label image to multi-one-hot encoded matrix of size image height x image width x #classes

    Parameters
    -------
    np_array: numpy array
        RGB image [W x H x C]
    Returns
    -------
    numpy array of size [#C x W x H]
        sparse one-hot encoded multi-class matrix, where #C is the number of classes
    """
    im_np = np_array[:, :, 2].astype(np.int8)
    nb_classes = len(int_to_one_hot(im_np.max(), ''))

    class_dict = {x: int_to_one_hot(x, nb_classes) for x in np.unique(im_np)}
    # create the one hot matrix
    one_hot_matrix = np.asanyarray(
        [[class_dict[im_np[i, j]] for j in range(im_np.shape[1])] for i in range(im_np.shape[0])])

    return np.rollaxis(one_hot_matrix.astype(np.uint8), 2, 0) 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:25,代碼來源:misc.py

示例13: multi_one_hot_to_output

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def multi_one_hot_to_output(matrix):
    """
    This function converts the multi-one-hot encoded matrix to an image like it was provided in the ground truth

    Parameters
    -------
    tensor of size [#C x W x H]
        sparse one-hot encoded multi-class matrix, where #C is the number of classes
    Returns
    -------
    np_array: numpy array
        RGB image [C x W x H]
    """
    # TODO: fix input and output dims (see one_hot_to_output)
    # create RGB
    matrix = np.rollaxis(np.char.mod('%d', matrix.numpy()), 0, 3)
    zeros = (32 - matrix.shape[2]) * '0'
    B = np.array([[int('{}{}'.format(zeros, ''.join(matrix[i][j])), 2) for j in range(matrix.shape[1])] for i in
                  range(matrix.shape[0])])

    RGB = np.dstack((np.zeros(shape=(matrix.shape[0], matrix.shape[1], 2), dtype=np.int8), B))

    return RGB 
開發者ID:DIVA-DIA,項目名稱:DeepDIVA,代碼行數:25,代碼來源:misc.py

示例14: _do_random_crop

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def _do_random_crop(self, image_array):
        """IMPORTANT: random crop only works for classification since the
        current implementation does no transform bounding boxes"""
        height = image_array.shape[0]
        width = image_array.shape[1]
        x_offset = np.random.uniform(0, self.translation_factor * width)
        y_offset = np.random.uniform(0, self.translation_factor * height)
        offset = np.array([x_offset, y_offset])
        scale_factor = np.random.uniform(self.zoom_range[0],
                                        self.zoom_range[1])
        crop_matrix = np.array([[scale_factor, 0],
                                [0, scale_factor]])

        image_array = np.rollaxis(image_array, axis=-1, start=0)
        image_channel = [ndi.interpolation.affine_transform(image_channel,
                        crop_matrix, offset=offset, order=0, mode='nearest',
                        cval=0.0) for image_channel in image_array]

        image_array = np.stack(image_channel, axis=0)
        image_array = np.rollaxis(image_array, 0, 3)
        return image_array 
開發者ID:petercunha,項目名稱:Emotion,代碼行數:23,代碼來源:data_augmentation.py

示例15: do_random_rotation

# 需要導入模塊: import numpy [as 別名]
# 或者: from numpy import rollaxis [as 別名]
def do_random_rotation(self, image_array):
        """IMPORTANT: random rotation only works for classification since the
        current implementation does no transform bounding boxes"""
        height = image_array.shape[0]
        width = image_array.shape[1]
        x_offset = np.random.uniform(0, self.translation_factor * width)
        y_offset = np.random.uniform(0, self.translation_factor * height)
        offset = np.array([x_offset, y_offset])
        scale_factor = np.random.uniform(self.zoom_range[0],
                                        self.zoom_range[1])
        crop_matrix = np.array([[scale_factor, 0],
                                [0, scale_factor]])

        image_array = np.rollaxis(image_array, axis=-1, start=0)
        image_channel = [ndi.interpolation.affine_transform(image_channel,
                        crop_matrix, offset=offset, order=0, mode='nearest',
                        cval=0.0) for image_channel in image_array]

        image_array = np.stack(image_channel, axis=0)
        image_array = np.rollaxis(image_array, 0, 3)
        return image_array 
開發者ID:petercunha,項目名稱:Emotion,代碼行數:23,代碼來源:data_augmentation.py


注:本文中的numpy.rollaxis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。